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Abstract. This paper presents a novel approach to exercise repetition
analysis using the YOLOv8-pose model and Dynamic Time Warping
(DTW) techniques applied to the InfiniteRep dataset. Our research ad-
dresses the challenges of accurate pose estimation and tracking in dy-
namic camera environments and with varying occlusions in synthetic
datasets. By integrating YOLOv8’s pose detection capabilities with the
temporal analysis strength of DTW, we propose a method that signif-
icantly improves the detection and classification of exercise repetitions
across diverse conditions. We demonstrate the effectiveness of this ap-
proach through rigorous experiments that test various scenarios, includ-
ing changes in camera angles and exercise complexity. Our results indi-
cate notable improvements in the accuracy and robustness of exercise
recognition, suggesting promising applications in sports science and per-
sonal fitness coaching.
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1 Introduction and Motivation

Human action recognition is pivotal in various applications within multime-
dia computing, including intelligent surveillance, virtual reality, and human-
computer interaction [10,1]. In sports and fitness, artificial intelligence (AI) as-
sists humans in decision-making and problem-solving [17]. Garbett et al. con-
ducted an intensive comparison and user evaluation of six AI fitness instructor
applications [4]. This technology can track an individual’s movements, analyze
their performance data, and provide suggestions for improvement.

https://dbis.rwth-aachen.de
https://www.dfki.de/web/forschung/forschungsbereiche/educational-technology-lab
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This is especially important for activities that require the learning of complex
motor movements. Despite progress in computer vision for action recognition
[6,3], the complexity and variability of human movements, combined with chal-
lenging datasets for pose tracking, limit the accuracy and efficiency of current
models. However, many state-of-the-art models struggle to accurately recognize
and track human poses with dynamic camera movements [20,21]. Additionally,
the use of synthetic datasets poses another challenge. These datasets are often
created by rendering images from parameterized 3D human models, involving
complex processes like shaping, posing, dressing, and texturing. While these
rendered images provide precise annotations, they can mislead pose estimation
models due to their artificial nature.

1.1 Research Questions and contributions

To guide our investigation and address the challenges identified in pose esti-
mation and exercise repetition analysis, we formulated the following research
questions:

RQ 1 Are there specific exercise types or movement patterns within the In-
finiteRep dataset that are more susceptible to inaccuracies in pose esti-
mation using YOLOv8 default model?

RQ 2 Are there strategies to mitigate camera angle, position variations, and
body occlusions to maintain effectiveness in detecting exercise repeti-
tions?

RQ 3 How can missing values and occlusions be effectively handled in pose
estimation for exercise repetition analysis?

This paper presents a novel approach for exercise repetition analysis utiliz-
ing the YOLOv8-pose model [16] and Dynamic Time Warping (DTW) tech-
niques [7,12,11,15] applied to the InfiniteRep dataset. Our research tackles the
challenges of accurate pose estimation and tracking in dynamic camera environ-
ments and under varying occlusions within synthetic datasets. By integrating
YOLOv8’s pose detection capabilities with the temporal analysis strengths of
DTW, we propose a method that significantly enhances the detection and clas-
sification of exercise repetitions across various conditions.
We present several contributions as follows.

Application to InfiniteRep Dataset This dataset encompasses substantial envi-
ronmental variations and comprehensive annotations, making it an invaluable
resource for evaluating the proposed methods. This emphasis addresses gaps in
current research, which frequently depends on less diverse and richly annotated
datasets.

Integration of YOLOv8 and DTW This combination improves the accuracy and
robustness of exercise repetition detection and classification, especially in dy-
namic camera environments and under varying occlusions, surpassing existing
methods that typically manage these tasks independently.
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These methods are critical for maintaining the accuracy of pose tracking
under challenging conditions, addressing a common issue where occlusions and
non-detections can significantly degrade performance.

Real-Time and Post-Workout Analysis Algorithms This study proposes two
distinct algorithms for exercise repetition detection: one for real-time (during-
workout) analysis and another for post-workout analysis. The real-time algo-
rithm delivers immediate feedback and correction, essential for sports coaching
and physical therapy applications. In contrast, the post-workout algorithm en-
ables a comprehensive review and detailed analysis after the exercise session,
enhancing utility for various user needs.

Rule Creation Interface A web-based application has been developed, enabling
teachers and students to create and perform exercise routines. This interface
leverages the motion detection and feedback mechanisms described in this pa-
per, making advanced techniques accessible for practical use. The interactive
rule creation tool allows users to define specific feedback rules, enhancing the
educational and training value of the system.

2 Related Work on InfiniteRep Dataset

The InfiniteRep dataset3 [20] is an open-source synthetic dataset designed for
fitness and physical therapy applications. It features videos of diverse avatars
performing multiple repetitions of common exercises, capturing significant vari-
ations in environment, lighting conditions, avatar demographics, and movement
trajectories. This variability ensures that each repetition mimics real human
performance differences. Key features of the InfiniteRep dataset include a com-
prehensive collection of 1,000 videos, distributed across 10 distinct exercises, each
represented by 100 videos. The exercises covered in this dataset are pushups, al-
ternating bicep curls, delt flys, squats, bird dogs, supermans, bicycle crunches, leg
raises, front raises, and overhead presses. The dataset provides extensive annota-
tions and metadata, including bounding boxes, segmentation masks, keypoints,
joint angles, repetition counts, avatar characteristics, and camera settings.

Such detailed annotations are particularly valuable for various computer vi-
sion and machine learning tasks, enhancing the dataset’s utility for research
and application development. Regarding format and accessibility, the videos are
provided in a 224x224 RGB format at 24 frames per second (fps).

To date, limited research has been conducted using the InfiniteRep dataset.
We identified two notable studies in existing literature: Chang et al. [2] imple-
mented a Spatio-Temporal Graph Convolutional Network (ST-GCN) for human
action recognition to assess users’ fitness statuses, utilizing skeleton data as in-
put to model inter-skeleton connections. This approach was validated using the
InfiniteRep dataset, demonstrating high accuracy.

3 https://marketplace.infinity.ai/pages/infiniterep-dataset

https://marketplace.infinity.ai/pages/infiniterep-dataset


4 M. Slupczynski et al.

Conversely, Pande et al. [9] developed Fitwave, a fitness application designed
to monitor and correct users’ exercise postures. They employed transfer learning
techniques on a pre-trained MobileNet architecture, refining their model using
the InfiniteRep dataset with a focus on three exercises: arm raises, bicep curls,
and squats. Despite advances in computer vision, the complexity of human move-
ments and the variability in pose tracking datasets present significant challenges.
Current models often fail to accurately track human poses in dynamic environ-
ments, particularly when using synthetic datasets. Integrating YOLOv8 for pose
estimation with DTW for temporal sequence analysis offers a promising solution,
significantly improving the detection and classification of exercise repetitions.

3 Technical Background

In this section, we introduce the underlying algorithms used in our application.
First, we examine the YOLOv8 algorithm and its application in pose detection.
Following this, we describe two algorithms designed for post- and during-workout
repetition detection.

3.1 YOLOv8-Pose

The YOLO (You Only Look Once) architecture [16] became a key object de-
tection algorithm by framing the problem as a single regression task, directly
predicting bounding boxes and class probabilities from full images in a single
evaluation. This approach contrasted with previous methods that required region
proposal networks or sliding windows, thereby significantly reducing computa-
tion time and enabling real-time performance. Subsequent versions, YOLOv1
through YOLOv10, introduced various improvements, such as batch normaliza-
tion, anchor boxes, multi-scale training, and feature pyramid networks, which
collectively enhanced the models’ speed and accuracy [5,19,18]. YOLOv8-Pose,
the latest pose estimation framework from the YOLO models, builds on these
advancements and focuses on pose estimation, a complex task that involves de-
tecting keypoints on human bodies and mapping their spatial relationships. This
model incorporates several key innovations:

Enhanced Backbone Network: YOLOv8 employs an enhanced backbone network
that leverages advancements in convolutional neural network (CNN) architec-
tures, such as deeper networks with more efficient layers, to capture more intri-
cate features from input images.

Keypoint Detection Figure 1 illustrates the YOLOv8 joint detection output,
enhanced for exercise repetition analysis. Each keypoint corresponding to a body
joint is marked and labeled with a unique identifier for precise tracking. The
keypoints include the nose (1), eyes (2, 3), ears (4, 5), shoulders (6, 7), elbows
(8, 9), wrists (10, 11), hips (12, 13), knees (14, 15), and ankles (16, 17).
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Fig. 1: Keypoint ID description.

Multi-Scale Feature Extraction: By integrating feature pyramid networks (FPN)
and path aggregation networks (PAN), YOLOv8-Pose effectively extracts and
utilizes features at multiple scales. This multi-scale approach is crucial for accu-
rately detecting keypoints across a range of human poses and body sizes.

Keypoint Localization Segment Head: The pose estimation segment head in
YOLOv8-Pose is designed to predict keypoints with high precision. It uses spe-
cialized loss functions and optimization techniques to ensure accurate localiza-
tion of human joints and key body parts.

Real-Time Inference: Adhering to the YOLO philosophy, YOLOv8-Pose is op-
timized for real-time inference, making it suitable for applications requiring im-
mediate feedback, such as motion capture, interactive fitness applications, and
real-time video analytics. YOLOv8-Pose’s application domains are diverse, span-
ning sports analytics, physical therapy, augmented reality, and human-computer
interaction. Its ability to provide real-time, accurate pose estimation enables new
interactive technologies and enhances user experiences. However, challenges per-
sist, particularly when dealing with complex scenes, varying lighting conditions,
and occlusions. The performance of YOLOv8-Pose is highly dependent on the
quality and diversity of its training data. For instance, models pre-trained on
standard datasets may struggle with domain-specific datasets like InfiniteRep,
which includes various environmental variations such as occlusions.

Pose detection accuracy In some frames, YOLO fails to detect the person, result-
ing in no skeletal data. In other frames, certain joints are not detected correctly,
causing their coordinates to be recorded as zeros. Consequently, those joints are
marked as [0.0, 0.0] in the skeletal data instead of having a valid position.
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Fig. 2: YOLOv8l applied to InfiniteRep exercises: Comparison of average and
median percentage of empty skeletons and zero joints (higher is worse).

As illustrated in Figure 2, when applied to the InfiteRep dataset, YOLOv8 is
not ideal for estimating poses in exercises where the person is lying on the floor
rather than standing, such as Bicycle Crunches, Bird Dogs, Leg Raises, Pushups,
and Supermans. However, YOLOv8 performs better at estimating poses in exer-
cises where the person is standing, such as Front Arm Raises (with dumbbells),
Alternating Bicep Curls (with dumbbells), Delt Flys (with dumbbells), Overhead
Press, and Squats. Simultaneously, the occlusion percentage in some videos is so
high that YOLOv8 cannot be expected to detect anything. Analyzing the av-
erage occlusion percentage per video reveals that, for arm raises, the maximum
average occlusion percentage is 22.64%, whereas for bicycle crunches it reaches
97.82%. Additionally, for a standing person, occlusion often affects the legs. This
is problematic for exercises that involve leg movements, such as squats.

3.2 The Post-workout and During-workout Algorithms

We employed slightly different algorithms for the post-workout and during-
workout exercise repetition detection. The during-workout algorithm is designed
for real-time analysis, where the learner performs actions in front of the camera.

The algorithm incrementally processes the data, continuously updating win-
dow parameters to detect exercise repetitions as they occur. This enables imme-
diate feedback and correction. In contrast, the post-workout algorithm operates
offline on uploaded videos, analyzing the entire sequence at once. It identifies
multiple best matches and evaluates them against dynamic criteria, making it
suitable for detailed post-exercise review and analysis without the need for imme-
diate feedback. This distinction allows the during-workout algorithm to provide
instant guidance, while the post-workout algorithm comprehensively evaluates
the entire workout session.
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Get K new skeleton states, WINDOW_START and WINDOW_END

WINDOW_END += K

Apply
DTW_subsequence_alignment

to data in win-
dow[WINDOW_START,

WINDOW_END]

Get DTW_DISTANCE and DTW_PATH

If DTW_DISTANCE
<= THRESHOLD and

DTW_DISTANCE is unchanged

Add DTW_PATH to the list of detected exercise repetitions

WINDOW_START = last element in DTW_PATH

End of data

True

False

True

False

Fig. 3: Flowchart for DTW-based during-workout algorithm.

During-workout algorithm - Continuous analysis The during-workout
algorithm (see Fig. 3) operates using a data stream, continuously analyzing
the learner’s movements in real-time. Initially, the window’s start is set to 0,
and the end is advanced with each new frame received. When K new skeleton
states are collected, the DTW alignment begins. The algorithm retrieves the
DTW distance and path within this window. It detects an exercise repetition
if the DTW distance is below a specified threshold and remains unchanged for
I iterations or S seconds. The start of the window is then updated to the last
frame of this detected repetition, allowing the process to continue.

If the DTW distance criterion is not met, the algorithm updates the window
parameters and repeats the alignment and evaluation steps, ensuring continuous
and immediate feedback for the learner.

Post-workout - Batch processing The post-workout algorithm (see Fig. 4)
starts by applying Dynamic Time Warping (DTW) subsequence alignment to
compare the learner’s trajectory with an expert’s trajectory. This algorithm
generates a list of the K best matches. The algorithm then selects the best
unchecked match, denoted as M , and checks if M ’s DTW distance is below a
predefined threshold and within a factor T of the maximum DTW distance from
the last checked match.
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Apply DTW_subsequence_alignment

Get K best matches

Take the best unchecked match M

M’s DTW distance <= THRESHOLD

M’s DTW distance <= MAX_DTW_DISTANCE * T

MAX_DTW_DISTANCE = M’s DTW distance

Add M to the list of detected exercise repetitions

True

True

False

False

Fig. 4: Flowchart for DTW-based post-workout algorithm

If M meets these criteria, it is added to the list of detected exercise repe-
titions, and the maximum DTW distance is updated to M ’s distance. If not,
M and all remaining unchecked matches are discarded. This process continues
until all relevant matches have been evaluated, ensuring a comprehensive post-
workout analysis of the exercise repetitions.

Replacing YOLO non-detection frames For post-workout analysis, to ad-
dress missing values caused by YOLO model non-detection, we interpolate un-
known values by identifying the nearest known values before (see Fig. 5) and
after the gap (see Fig. 6). Unknown angles or distances are replaced with val-
ues that transition from the nearest known value before the gap to the nearest
known value after it. Similarly, zero joint coordinates are replaced with coordi-
nates that gradually change from the nearest known value before the gap to the
nearest known value after it.

Fig. 5: DTW trajectories before filtering out outliers
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Since DTW sub-trajectory alignment is sensitive to outliers, we filter them by
examining data within a specified window size. If values in this window deviate
significantly from the surrounding data, they are considered outliers and are
replaced gradually to maintain data consistency. For during-workout analysis,
we replace unknown angle or distance values with the last known angle; and
zero joint coordinates with their last known coordinates. To filter outliers, we
examine the data within a window size of 1. If an outlier is detected within
this small window, it is replaced with the last known value, ensuring real-time
consistency and accuracy in pose detection during the workout.

Fig. 6: DTW trajectories after filtering out outliers

4 Rule Creation Interface description

A web-based application was built to enable learners and teachers to apply the
proposed algorithm in practice. The user interface is designed to streamline the
creation and performance of exercise routines, leveraging the described motion
detection and feedback mechanisms. The back-end architecture of this system fol-
lows a multimodal sensor-based cloud pipeline [13,14]. The UI design for defining
feedback rules focused on using angles to detect motion differences [8], ensur-
ing consistency regardless of body shape. Expert feedback led to incorporating
relative distances between body parts for more detailed feedback. Preliminary
interviews with sports trainers and students provided useful insights, but a small
sample size limited the statistical significance of the findings. Nonetheless, this
feedback played a crucial role in iterating the design to better meet the needs of
the users and ensure the effectiveness of the feedback system in real-world train-
ing scenarios. Students interact with the system by selecting exercises based on
their thumbnails and descriptions and performing them in front of a webcam.
The system then uses YOLOv8 to extract their skeleton data, match exercise
repetitions, and provide immediate and summative feedback based on rules pre-
defined by the teachers. Teachers initiate the exercise creation process by pro-
viding an expert recording of the exercise. From this recording, they select key
poses and define specific rules for the algorithm to check, ensuring that learners
perform the exercises accurately.
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The underlying algorithm interpolates between the key poses defined in the
exercise, identifying the closest match to apply the relevant rules to the learner’s
motion. The rule creation interface for teachers (see Figure 7) allows for versatile
input of feedback guidelines.

Fig. 7: Rule Creation UI.

Teachers can view a list of key poses (4) and select any key pose to see
the corresponding extracted skeleton on the left side of the UI (1). For each key
pose or interval between key poses, teachers can define various rules (2): distance
rules (2a) specify the required distance between certain body joints (e.g., the
distance between the left and right hand must be at least 1.5 times the distance
between the shoulders). To do this, two distances are selected. For visualization
purposes and to assist the user, the first distance is used to calculate a unit of
measurement. The unit of measurement is 1/10 the first distance. The second
distance is calculated using this unit of measurement. Then a chart shows the
change of these two distances over time.
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Angle rules (2b) set intervals for the angles between body joints (e.g., the
angle between the arm and hip at the shoulder joint must be at least 120°); and
time rules (2c) determine the timing requirements for holding or transitioning
between key poses. Teachers can choose to apply these rules to a single key
pose or across an interval between selected key poses (3a). By clicking on the
skeleton, teachers can select the body parts to be considered for angle rules
(1a). The application pre-computes the expert motion angles and visualizes the
target motion range, simplifying the rule-creation process. Teachers then specify
the angle interval for the motion (3d) and determine the range of key poses
to which the rule applies (3e). Additionally, they can decide whether feedback
should be provided during the execution of the learner’s motion or afterward in
the summative section (3f).

Once a rule is created, the system displays a list of active rules with their
parameters and provides a visualization of the motion range relative to the expert
recording (see Figure 8).

(a) Angle Rule Description. (b) Distance Rule Description.

Fig. 8: Rule Description UI.

In the depicted angle rule example (see Figure 8a), we can see a rule for the
angle formed by the “Right Hip – Right Shoulder – Right Elbow”. The system
shows the acceptable angle range as 40° to 180°. A graph illustrates the recorded
angle over time, with the x-axis for frame number and the y-axis for angle in
degrees. The blue line represents the actual angle, while the red and orange lines
mark the maximum (180°) and minimum (40°) allowable angles, with the allowed
range highlighted in light orange. Points within the specified interval between
key poses, where the rule must be followed, are filled in blue, and points outside
this interval are filled in white. Additionally, the interface specifies that this rule
applies to specific key poses and provides feedback during training. This allows
teachers to review and adjust rules as necessary, ensuring that the exercises are
both precise and effective. Overall, this structured and interactive UI ensures
that teachers can create detailed and accurate exercises while students receive
precise real-time feedback, enhancing their learning experience.
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5 Experimental Results

We evaluated the effectiveness of our proposed method by analyzing the detec-
tion and classification accuracy of exercise repetitions using both the YOLOv8
pose model and DTW techniques. For our evaluation, we considered a detected
repetition to be a true positive (TP) if the left and right boundaries differed by
no more than 30% of the length of the repetition from the corresponding bound-
aries in the InfiniteRep dataset. We specifically used accuracy as our primary
metric for evaluation, defined as Accuracy = TP/N, where TP is the number of
true positives, and N is the total number of repetitions.

We analyzed 30 videos for each exercise, focusing on various angles and dis-
tances. Specifically, we identified the top 10 angles and distances for front arm
raises. The optimal angles and relative distances are summarized in Table 1.

Table 1: 10 Best angles and rel. dist. for “Front Arm Raises (With Dumbbells)”
Accuracy IDs of joints ID decoding

Angles
1 0.9029 (10, 11, 12) Angle: Left Wrist - Right Wrist - Left Hip
2 0.8854 (6, 9, 11) Angle: Left Shoulder - Right Elbow - Right Wrist
3 0.8769 (12, 9, 17) Angle: Left Hip - Right Elbow - Right Ankle
4 0.8739 (9, 10, 1) Angle: Right Elbow - Left Wrist - Nose
5 0.8724 (7, 8, 10) Angle: Right Shoulder - Left Elbow - Left Wrist
6 0.8719 (10, 6, 13) Angle: Left Wrist - Left Shoulder - Right Hip
7 0.8717 (12, 9, 15) Angle: Left Hip - Right Elbow - Right Knee
8 0.8704 (7, 10, 8) Angle: Right Shoulder - Left Wrist - Left Elbow
9 0.8629 (10, 8, 15) Angle: Left Wrist - Left Elbow - Right Knee
10 0.8585 (11, 9, 1) Angle: Right Wrist - Right Elbow - Nose

Relative Distances (1st distance and 2nd distance – used to calculate a unit of measurement)
1 0.9505 (6, 11) | (9, 13) Dist.: Left Shoulder - Right Wrist Rel. to: Right Elbow - Right Hip
2 0.9472 (11, 1) | (9, 12) Dist.: Right Wrist - Nose Rel. to: Right Elbow - Left Hip
3 0.9418 (11, 1) | (9, 13) Dist.: Right Wrist - Nose Rel. to: Right Elbow - Right Hip
4 0.9406 (7, 11) | (9, 13) Dist.: Right Shoulder - Right Wrist Rel. to: Right Elbow - Right Hip
5 0.9317 (11, 1) | (11, 15) Dist.: Right Wrist - Nose Rel. to: Right Wrist - Right Knee
6 0.9291 (9, 1) | (9, 13) Dist.: Right Elbow - Nose Rel. to: Right Elbow - Right Hip
7 0.9277 (8, 1) | (9, 13) Dist.: Left Elbow - Nose Rel. to: Right Elbow - Right Hip
8 0.9241 (6, 9) | (9, 13) Dist.: Left Shoulder - Right Elbow Rel. to: Right Elbow - Right Hip
9 0.9238 (7, 14) | (9, 13) Dist.: Right Shoulder - Left Knee Rel. to: Right Elbow - Right Hip
10 0.9228 (11, 17) | (6, 1) Dist.: Right Wrist - Right Ankle Rel. to: Left Shoulder - Nose

The results suggest that our method can effectively be used for detecting and
classifying exercise repetitions. Accuracy metrics reveal that certain angles and
relative distances are more reliable for correct repetition detection in dynamic
camera environments and with varying occlusions. For instance, the angle formed
by between the Left Wrist - Right Wrist - Left Hip achieved the highest accuracy
of 0.9029, showcasing the algorithm’s robustness in correctly identifying front
arm raises. Additionally, the best relative distances, such as Left Shoulder -
Right Wrist relative to Right Elbow - Right Hip 0.9505, offer further context for
enhancing detection accuracy.

Findings indicate that specific joint configurations are essential for accurate
recognition of exercise movements. Analyzing the joint angles, such as Wrist-
Elbow-Shoulder, shows that these angles can be affected by the person’s orien-
tation relative to the camera. For more accurate results, selecting joints that are
not directly involved in the movement seems advantageous. For instance, when
lifting arms, using the left and right wrist along with the nose, hip, or knee can
improve detection accuracy (see Table 1).
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Additionally, we compared the accuracy of after-workout and during-workout
algorithms, utilizing combinations of the best angles and distances, in detecting
exercise repetitions using the InfiniteRep dataset (see Figure 9). The evaluation
included both ideal dataset data and data obtained with YOLOv8 models. The
highest accuracy is achieved with the after-workout algorithm on ideal data,
followed by the during-workout algorithm on ideal data. Accuracy decreases sig-
nificantly when using YOLOv8 pose detection, especially for exercises performed
on the floor, such as Bicycle Crunches, Bird Dogs, Leg Raises, Pushups, and Su-
permans, highlighting YOLOv8’s limitations in scenarios where body parts of
the trainees were occluded, e.g. due to them laying on the ground.
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Fig. 9: Highest Accuracy Comparison Across Exercises Using Post- and During-
Workout Algorithms with Ideal and YOLOv8l Pose Detection

6 Limitations

The design and implementation of our psychomotor learning application exhibit
several limitations that may impact the system’s effectiveness and applicability
in diverse contexts. The manual rule creation process in the application is sus-
ceptible to expert error, and users may struggle to determine which expert rules
to trust.
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While the application’s approach to analyzing angles and relative distances
is designed to be non-discriminatory regarding body shape, it does not account
for the user’s flexibility or fitness level. Another limitation of our contribution
is the lack of comparison of YOLOv8 with existing human pose models used in
kinematic analysis, such as MediaPipe 4, OpenPose 5, or other available open
source models. This comparison would be crucial for validating the system’s per-
formance against established benchmarks and could help address the limitations
of YOLOv8. Additionally, while our method is not directly comparable with
other studies utilizing the InfiniteRep dataset, as those typically focus on de-
tecting exercise types without tracking the exact number of repetitions or their
timing, applying our algorithm to other datasets would make such a comparison
feasible. As mentioned, the default YOLOv8 models present challenges in detect-
ing poses for users who are lying down or are heavily occluded. Furthermore,
YOLOv8 does not detect finer skeleton details such as fingers or toes, which
could be beneficial for certain exercises requiring detailed analysis. Finally, the
UI evaluation was conducted with a small sample size, limiting the statistical
significance of the findings. Further studies with a larger participant pool are
necessary to draw more robust conclusions and to drive a thorough UI design
process.

7 Future Work

Future work could validate our approach across multiple heterogeneous datasets
to understand its generalizability in various real-world scenarios. Given that our
algorithm’s performance on the InfiniteRep dataset isn’t directly comparable
with other studies, further evaluations on additional datasets and against other
algorithms are necessary to establish broader applicability and effectiveness.

Additionally, introducing a rating system for exercises and fitness experts
could enhance trust in the exercise creation process, mitigating potential errors
in manual rule creation. To better accommodate users’ varying fitness and flex-
ibility levels, future iterations could incorporate detailed difficulty or expertise
levels into exercises.

The system could be extended to support group training sessions, where
real-time feedback is provided to multiple users simultaneously. This could be
particularly useful for sports teams or fitness classes, where individual and group
performance can be monitored and adjusted on the fly.

Integrating biomechanical models with pose estimation could improve accu-
racy by considering joint constraints and physical properties. This would imply
implementing a model that assesses the risk of injury based on detected pose
and movement patterns. Such a system could alert users to potential risks and
suggest safer alternatives or modifications to exercises based on their form and
physical condition.

4 https://github.com/google-ai-edge/mediapipe
5 https://github.com/CMU-Perceptual-Computing-Lab/openpose

https://github.com/google-ai-edge/mediapipe
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Developing personalized feedback models that adapt to individual perfor-
mance histories could tailor workouts to specific needs and goals. An adaptive
feedback model could not only provide feedback but also adapt their coaching
style based on the user’s emotional state and motivation levels.

Evaluating user progress over time would provide valuable data to refine the
algorithms, enhancing their predictive capabilities and adapting to long-term
trends in user performance.

A critical area for future work involves comparing our pose estimation ap-
proach with existing kinematic analysis models like MediaPipe, OpenPose, or
other open source models. This comparison could reveal areas for improvement
or potential alternatives that might outperform YOLOv8 in certain scenarios.
Moreover, addressing the limitations of YOLOv8, such as its difficulty in detect-
ing poses for individuals lying down or occluded, as well as its inability to detect
finer details like fingers or toes, is essential. Future work could also explore plac-
ing cameras on ceilings, fine-tuning YOLOv8, or exploring other pose detection
models like MediaPipe to overcome these challenges.

Finally, a thorough UI evaluation with a larger and more diverse sample size
is needed to gather statistically significant data. This feedback would inform a
potential redesign, ensuring the interface is user-friendly and effective for a wider
audience.

8 Summary and Conclusions

In this paper, we introduced an approach to exercise repetition analysis by in-
tegrating the YOLOv8-pose model with DTW techniques, specifically applied
to the InfiniteRep dataset. This combination enhances the detection and clas-
sification of exercise repetitions, especially in dynamic environments and under
varying occlusions, addressing the limitations of current state-of-the-art models.

We found that floor exercises like Bicycle Crunches, Bird Dogs, Leg Raises,
Pushups, and Supermans are more susceptible to pose estimation inaccuracies
using the YOLOv8 default model.

These exercises result in significant occlusions and complex body orientations,
posing challenges for accurate keypoint detection and tracking (see RQ1).

Our method leverages the detailed annotations and environmental variations
of the InfiniteRep dataset, including diverse lighting conditions, mirroring du-
plication, avatar demographics, and movement trajectories. We handled miss-
ing values and occlusions by proposing robust methods for interpolating un-
known values and filtering outliers to improve accuracy (see RQ2). By devel-
oping during-workout and post-workout analysis algorithms, we offer solutions
for immediate feedback during exercises and detailed reviews post-exercise, en-
suring broad applicability from sports coaching to physical therapy. Zero joint
coordinates can be substituted with their last known coordinates to maintain
data continuity (see RQ3). For post-workout analysis, interpolation estimates
missing values by identifying the nearest known values before and after gaps,
creating a seamless transition.
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For real-time analysis, continuously replacing unknown values with the most
recent known values ensures consistency and accuracy, while filtering techniques
identify and correct outliers in real-time. These approaches enhance the detection
and classification of exercise repetitions under challenging conditions.

Our web-based application enhances practical utility by providing an inter-
active platform for creating exercise routines and performance assessments. This
tool, with a rule creation interface, allows educators and trainers to tailor feed-
back and ensure precision in exercise execution. Our evaluation demonstrates
the robustness and versatility of our approach across various exercises in the
InfiniteRep dataset.

The experimental results highlight significant improvements in exercise recog-
nition accuracy and robustness, suggesting promising applications in sports sci-
ence and personal fitness coaching. This research advances the state-of-the-art
in exercise repetition analysis and provides practical tools and methods for real-
world settings. Integrating advanced pose estimation with temporal analysis
opens new avenues for enhancing human motion analysis, significantly contribut-
ing to sports science.
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