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Abstract. As a consequence of demographic shifts, the proportion of
the older population is growing at an accelerated pace, resulting in a
notable decline in cognitive and motor functions. This study examines
the potential of wearables to monitor activities of daily living (ADL)
and identify changes in behavior, thereby enabling early intervention to
maintain the independence of the person. Eight dynamic ADLs were ana-
lyzed using data collected from eight subjects who were wearing a sensor
belt that includes an accelerator and a gyroscope. The data were prepro-
cessed and employed to train and evaluate two distinct types of classifiers:
a deep learning and several machine learning approaches. Two data splits
were considered: a subject-dependent model, which utilized data from all
subjects for training and testing, and a Leave-One-Subject-Out Cross-
Validation (LOSO-CV) subject-independent model, which excluded one
subject from the training set for validation. The subject-dependent ap-
proach yielded high accuracies of 99.5% and 99.8% for the classification
network and the best support vector machine, respectively. The LOSO-
CV yielded accuracies of 77.8% for the convolutional neural network
and 77.6% for the best support vector machine. While the classification
network demonstrated marginally superior results, the support vector
machine required significantly less training time, suggesting its potential
suitability for practical applications.

Keywords: human activity recognition · machine learning · feature ex-
traction · feature learning · convolutional neural network · support vector
machine · activities of daily living

1 Introduction

As a consequence of demographic change, the number of older people is rising
rapidly. In old age, individuals experience a decline in cognitive abilities and,
most notably, in motor functions. To assess physical decline, the activities of
daily living (ADL) are frequently evaluated through the administration of a
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questionnaire. However, this approach often results in a considerable degree of
measurement noise, as self-perception frequently differs from the actual measured
reality. It would be more prudent to assess the ADL over an extended period
to identify changes and implement preventative measures to delay dependence.
Technical assistance would be beneficial, as the scarcity of medical professionals
necessitates that such assessments be conducted independently to alleviate the
burden on them [12]. Additionally, individuals exhibit disparate behaviors in
their own homes than under the supervision of a medical professional. Therefore,
it may be advantageous to implement home access systems or to use wearables
to facilitate continuous monitoring [7,22].

This study examines the potential for measuring ADL using wearable tech-
nology. For this purpose, we self-designed and implemented all the steps of a
Human Activity Recognition (HAR) system. The study design is depicted in
Figure 1. Once the research question was defined, eight dynamic ADLs were
selected for analysis. Dynamic movements, such as walking or jogging, exhibit
variations over time, while static activities like sitting or lying down produce rel-
atively constant readings. We decided to incorporate dynamic activities - even
activities that require higher levels of physical engagement, like jogging or jump-
ing - into our analysis, in order to enable the identification of subtle behavioral
changes at an early stage. Detecting these changes early, while the individual is
still capable of performing such activities, allows for timely interventions. Inter-
ventions, such as targeted exercise and training, can help to extend the period
during which the person remains physically active and dynamic, thereby main-
taining their independence for a longer time. Studies have shown that especially
jumping, which is a rebound exercise, improved the Timed-Up and Go (TUG)
test results in the rebound group twice compared to the control group [21]. This
significant reduction in TUG test times not only indicates an improved ability
to stand up from a chair more quickly, walk faster with better balance, turn
more efficiently, and sit down with greater control without assistance, but also
underscores the importance of jumping in assessing functionality in older adults.
Jumping challenges and enhances coordination, strength, and balance, which are
critical components for maintaining independence and reducing the risk of falls
in this population [20]. Our approach aims to recognize eight dynamic activities
in order to address emerging issues before they significantly impact the person’s
daily life.

The activities were performed and recorded in a separate data set of eight
test subjects. A sensor belt was employed to quantify acceleration and rotation.
Following the preprocessing of the recorded data, two types of classifiers were
analyzed: a deep learning approach (DL) and a machine-learning (ML) approach.
In addition, two data splits were analyzed: a person-specific approach, in which
the data from all subjects is used for training, and a LOSO-CV to ascertain
whether the data from an unknown subject can be robustly classified. In order to
facilitate the testing phase, the data pertaining to a single subject was excluded
from the training set. These approaches are then compared with each other and
the reasons for any misclassifications are explained.
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Fig. 1. Study design. The single steps of the study are presented, starting with the
design stage, followed by the data acquisition, preprocessing and signal processing of
the data. In the end, the evaluation steps are presented.

2 Related Work

In this section, we discuss the most common design choices of HAR system
components for healthcare in existing work. HAR systems can be categorized
based on the data acquisition tools used, classification methods employed and
the complexity of the activities being analyzed [25]. We will briefly cover these
aspects in the following paragraphs.

In terms of the acquisition tools, especially for healthcare applications such as
activity monitoring of elderly people, wearable devices are preferred over cameras
because of privacy concerns and because they satisfy the long-term usability of
a monitored environment [25,16].

Inertial sensor-based systems that employ accelerometers, gyroscopes and
magnetometers can be easily integrated into wearable devices, which can be
used to record movements on various body sites at the same time. However,
the inconvenience and intrusiveness of wearing numerous devices can impose
additional burdens on users, thus many studies prefer to use only one sensor,
such as smartphones, which have become indispensable in people’s everyday lives
[8]. The authors in [15] proposed using one Inertial Measurement Unit (IMU)
integrated into a belt to ensure effortless use and discreet sensor placement,
particularly to allow an easy process of future self-assessments at home. The
employed sensor must have the ability to model the motion information of the
activities of interest so that it will be able to classify it [25].

Defining activities of interest depends on the target application or desired
health-related outcome [6]. The authors in [13] proposed six activities - sitting,
standing, walking, laying, going up and going downstairs, for elderly patients’
monitoring of their general health status and dynamism. In contrast, we decided
to use only dynamic activities, and not consider pose-related activities in our
models.

Depending on the nature of the activity being analyzed - e.g. simple or com-
plex actions, poses, locomotion patterns or ADLs - as well as the amount of
training data available, various machine-learning models can be used for accu-
rate activity recognition [18].
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Traditional ML approaches like SVMs, decision trees and KNNs performed
well across many HAR application areas [18] but require feature engineering to
execute optimally [25].

Especially SVMs have been shown in [3,18] to perform well with data of
unknown distribution and once its decision boundary is established, SVM proves
to be a robust classifier and scales effectively for high-dimensional data. These
facts motivated our decision to use the SVM in our research as the traditional
ML approach of choice.

Traditional ML methods are increasingly outperformed by deep neural net-
works (DNNs), particularly in their ability to learn complex representations from
multidimensional data [9].

Deep learning is the second big approach for HAR after traditional ML using
handcrafted features but requires a substantial amount of training data to learn
intricate features effectively. DL is an evolution of ML in that it uses deeper
networks to autonomously learn and recognize more complex and hierarchical
patters in large amounts of data without the need for manual feature extraction.
Deep Artificial Neural Networks (ANNs) emulate the human neural system, with
the primary goal of extracting non-linear relationships from data for classifica-
tion, thus automatically extracting and learning the features instead of manually
engineering and selecting them [10].

Convolutional Neural Networks (CNN) are powerful neural networks in image
processing tasks using convolutions to learn representative spatial features [4].
CNNs perform well in recognizing locomotion activities like walking, cycling,
sitting, or standing, but more complex activities made up of multiple simpler
activities would require more specialized models like recurrent neural networks
(RNNs) or hybrid architectures [2].

Since the collected dynamic activities are not very complex, and because
CNNs have been shown to work well and converge faster on multidimensional
time-series data when compared with RNNs [3], a CNN is selected as the deep
learning model for the subsequent study.

3 Methods

In the following, the underlying methods of this study will be outlined. First,
the recorded dataset will be presented. Subsequently, the deep learning and
machine-learning approaches employed are outlined, along with a description of
the experiments conducted.

3.1 Dataset

This study aims to examine the potential of deep learning and machine learning
classifiers for the activities of daily living. To attain this objective, this eight
dynamic activities were selected:

– Bend
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– Walk
– Jump
– Jog
– Rotate left
– Rotate right
– Walking up the stairs
– Walking down the stairs

In this research, a self-acquired data set is employed. To attain this objective, we
employed the SmarTracks Sensor DX5.0 Timing in conjunction with the TB40
belt. The data is recorded via an Android smartphone using the Smart Run
app [17]. The Smart Run app paired with a SmarTracks DX5.0 sensor provides
real-time timing results, which are streamed directly to your smartphone. The
app also provides a way of exporting the raw data recorded with the Smar-
Tracks Sensor, which we have used for our study. All subjects were introduced
to the functionality of the device and were permitted to initiate and terminate
the measurements independently. The smartphone was retained on the body
throughout the recording period to ensure continuous connectivity with the sen-
sor. The DX5.0 Timing comprises three sensors: a three-axis accelerometer, a
three-axis gyroscope and a three-axis magnetometer. Each of the sensors was
initiated with a sampling rate of 250 Hz. Eight subjects, designated Si with
i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, were included in the study. In order to obtain standard-
ized measurements, it is essential that the placement of the sensor belt and the
position of the sensor unit remain consistent across all subjects. The belt was
secured around the waist, between the L3 and L5 lumbar vertebral bodies, in
accordance with the methodology described by Hellmers et al. [15]. Four of the
test subjects were female, and four were male. The mean age of the subjects was
24.5 years, with a standard deviation of 3.2 years. The mean height was 1.71
meters, with a standard deviation of 0.07 meters. The cohort thus represents a
targeted area of the population from 21 to 27 years.

Each subject was required to conduct each of the eight activities continuously
for approximately two minutes, with the aim of achieving a balanced distribu-
tion of the activities. In order to facilitate subsequent data labelling, only the
described dynamic activities were recorded, without transitions between differ-
ent exercises. This approach enabled the assignment of one label to each whole
measurement, alleviating the subsequent analysis.

As the accelerometer and gyroscope are capable of displaying movements
with a high degree of precision, the magnetometer measurements were excluded
from the subsequent discussion to avoid calibration and interference problems
and to reduce the dimensionality of the data as it is also done in the experiments
of Pesenti et al. [23]. As the test subjects conducted the measurements indepen-
dently and there was a brief interval between the start of the measurement and
the start of the activity, the initial and last five seconds of the individual mea-
surements were excluded as the initial step in the preprocessing procedure. This
was due to the fact that the subjects frequently placed the smartphone in their
trouser pockets after initiating the recording process, allowing them to perform
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the desired movements with their hands free. For the two stair-climbing activi-
ties, the window was set to 2.5 seconds. This ensured that only the movement
itself was presented in the data, as it was observed during the data recording
that the subjects started to climb the stairs at a considerably faster pace than
the planned five seconds.

The subsequent step involved standardizing the data across the three axes of
the accelerometer and gyroscope, by using z-normalization, which is a standard
preprocessing technique that can significantly enhance the learning capabilities
of deep neural networks and also removes certain types of bias effects [1,5].
Consequently, the mean and standard deviation were calculated for all subjects.
Afterwards, a windowing operation was performed in order to augment the data.
After performing a search to find the optimal window and stride sizes, the width
of the window was set to 2.2 seconds, while the stride was set to 0.1 seconds. The
process of finding the optimal window and stride sizes is described in Chapter
3.4. The data after each preprocessing step is shown in Figure 2.

Fig. 2. Preprocessing pipeline of the data. A measurement of the gyroscope of the
x-axis of subject S1 of the activity Walk is shown. The data is visualized after each
preprocessing step: after the denoising and the standardization (z-normalization).

Given the specified window length of 2.2 seconds and stride of 0.1 seconds,
the resulting number of segments over all subjects amounts to 64164. The exact
number of data, dependent on subject and activity, can be found in Table 1. The
table shows that the segments of the classes Walking up the stairs and Walking
down the stairs are significantly fewer than those of the other classes. This results
in class imbalance due to the fact that the stair which was used is not particularly
long, with each recording therefore being approximately ten to fifteen seconds
in length. Furthermore, the first and last seconds of each recording have been
omitted, which has also resulted in a reduction in the number of segments.
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Table 1. A summary of the segments recorded per subject and activity, with a window
length of 2.2 seconds and a stride of 0.1 seconds.

Subject Activity
Bend Walk Jump Jog Rotate

left
Rotate
right

Walking
up the
stairs

Walking
down
the
stairs

S1 1173 1090 1119 920 946 1173 364 284
S2 1119 1441 1115 898 1062 1124 847 781
S3 1222 1427 1211 1020 1179 1173 989 751
S4 1312 1086 1165 960 1116 1169 921 891
S5 1169 1020 1234 1039 1211 1192 871 770
S6 1180 1312 1169 1079 1188 1161 860 767
S7 1103 1035 1161 1073 1138 1146 444 305
S8 1222 822 1119 701 1010 756 476 383
Total 9500 9233 9293 7690 8850 8894 5772 4932

3.2 Classification network

The deep learning approach utilizes a similar architecture to the one proposed
in [24], which is illustrated in Figure 3.
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Fig. 3. Architecture of the proposed classification network. Four Conv-Blocks followed
by max-pooling layers are used for feature extraction. Three fully-connected layers are
used to obtain the output size of eight in order to represent the class probabilities of
the activities.

The classification network receives a tensor of the shape (B × C × N) as
input, where B represents the batch size, C the number of channels and N the
length of the sequence. Given that the input comprises patches of 2.2s from
three axes of the accelerometer and the gyroscope, the dimensions of the input
tensor are C = 6 and N = 550. The classification network consists of four
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Conv-Blocks. Each Conv-Block comprises a convolutional layer, which doubles
the dimensions, followed by a batch normalization and a rectified linear unit
(ReLU) activation. A second convolutional block, comprising a convolutional
layer, batch normalization and ReLU activation, is then applied, maintaining
the number of channels. The Conv-Block is shown in Figure 4.
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2×X

Y Y

2×X

Y Y

Input Convolution Batchnorm ReLU

Fig. 4. Architecture of the proposed Conv-Block. The feature size is first doubled by a
convolution, followed by a batch normalization and an activation layer. A second block
of convolution, normalization and activation is applied, keeping the feature size.

Following each convolutional block, the dimensions are reduced by a factor of
50% through a max-pooling operation. Subsequently, the feature maps resulting
from the final Conv-Block are flattened and fed through three linear layers, with
the objective of achieving an output size of eight, which defines the probability
for each activity class.

3.3 Support Vector Machine

In the ML approach, a support vector machine (SVM) was employed. As no
features are learned automatically in this context, we utilize handcrafted features
from the preprocessed segments that are suitable for IMU data [26]. Therefore,
the following time-domain features are included:

– Minimum (Min)
– Maximum (Max)
– Arithmetic Mean (Mean)
– Standard deviation (SD)
– Variance (Var)
– Zero crossing rate (ZCR)
– Mean crossing rate (MCR)
– Positive peak count (PPK)
– Negative peak count (NPK)

In addition to a linear kernel, a Gaussian radial basis function (RBF) kernel
is also analyzed. Given that this is a multi-class problem, the ‘one versus rest’
separation is employed.
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3.4 Experiments

We describe our experiments in the following section as follows:
First, we present the search for the best stride and window length, which was

performed to prepare the data for training. Subsequently, we describe how we
split the data into three distinct sets, namely training, validation and test set, via
a K-fold cross-validation approach. Finally, we provide the hyperparameters of
the two approaches and the evaluation metrics for the validation of our models.

Since it is important for the classification of dynamic movements based on
sensor data that the movements are completely contained in a window, the
analysis of the window size is of great importance. Hellmers et al. [15] achieved
the best results with a window length of 1.853 and a stride of 0.249 for dynamic
activities. Therefore, we chose a range around these values to find out the best
window length and step size for our recorded activities. For this purpose, we
trained the CNN on a fold with 20 different window sizes ranging from 0.4 to
2.3 seconds with a fixed stride of 0.25 seconds and calculated the accuracy in
each case to get the range of the sufficient window length. In the second step, a
cross-analysis of window length between 1.8 and 2.2 and strides between 0.1 and
0.3 is conducted in order to identify the optimal pair of values. These are then
employed in the subsequent analysis of all approaches, since related work has
shown that the window and step sizes found for specific activities are optimal
irrespective of the classification method [11].

Both the CNN and the SVM approach are validated through a K-fold cross-
validation. First, a 5-fold validation is performed. For this purpose, the data
of the individual activities is mixed across all subjects and equally distributed
so that each task is presented with the same frequency in each fold. For the
validation set, 10% of the training data was used at random. This resulted in an
average training set of 46,200 segments, a validation set of 5,134 segments, and
a test set of 12,830 segments. This approach may be beneficial in the context of
subject-specific systems, which involve the adaptation of a classifier to a known
set of subjects. In order to assess the generalizability of the classifiers on data
from a subject, of which there is no previous knowledge in the training, an 8-fold
cross-validation was also analyzed. In this case, one subject was excluded from
the training set and used for testing across all activities. This resulted in the use
of seven subjects for training purposes and one subject for testing. Additionally,
10% of the training data was randomly selected for validation, resulting in the
following average quantities: A total of 51385 segments were used for training,
5710 for validation and 7069 for testing.

The classification network was trained for 200 epochs, with an early stopping
mechanism built in to terminate the training if the validation loss did not improve
for 10 epochs. Additionally, a batch size of 16 was selected. The Adam optimizer
was used to optimize the weights with an initial learning rate of 0.001. A learning
rate scheduler was applied, which reduces the learning rate by 0.1 every 20
epochs. The cross-entropy loss function was employed to quantify the error.
Given that the classes are not balanced, it is necessary to address this issue in
the classifiers. Therefore, the weights were assigned to the classes according to
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their probability of occurrence. The weights of the optimal network were utilized
for the analysis of the test data set. In the following, the classification network
with the 5-fold cross-validation will be referred to as CNN5 whereas the one
with the 8-fold cross-validation will be referred to as CNN8.

In order to identify the optimal features for the SVM, a random feature
elimination (RFE) was employed. This involves training the SVM on the initial
feature set and recursively considering an ever smaller feature set until only one
feature remains, resulting in a ranking of the features. The lower the ranking,
the more important the feature is, so the features with the lowest rankings are
the ones that are selected. It is also necessary to address the issue of class im-
balance in the SVMs. So the SVM with linear kernel was trained with weights
automatically set inversely proportional to the class frequencies, thus compen-
sating for any imbalance in the classes. The maximum number of iterations
was set to 50,000. The dual parameter was set to false, as a greater number of
segments were designated as features. A grid search was conducted to identify
the optimal values for parameters C and tol. This resulted in a C of 10 and a
tol of 1e-05 for the linear kernel. For the SVM with the RBF kernel, the au-
tomatic balancing of the classes was also applied, and a maximum number of
iterations of 50,000 was selected. The gamma parameter was set to scale, and the
C and tol parameters were also determined here using the grid search method.
In the following, the SVM trained with the linear kernel on the best features
resulting from the RFE with a 5-fold or an 8-fold cross-validation is labelled
with LinearSVM5 and LinearSVM8 respectively. The SVM with the RBF ker-
nel is trained with the raw data (RadialSVM5Raw and RadialSVM8Raw), on
all hand-crafted features (RadialSVM5All and RadialSVM8All) and also on the
best features (RadialSVM5Best and RadialSVM8Best) for the 5-fold and 8-fold
cross-validation.

To validate the test dataset for both the CNN and the SVM, a confusion
matrix was constructed based on the predictions and the ground truth. The fol-
lowing metrics are employed to assess the performance of the classifiers: accuracy,
macro F1-score, precision and recall.

4 Results

This section provides the analysis results of the optimal window and stride se-
lection and of the optimal feature selection using RFE. In addition, the results
for the metrics accuracy, macro F1-score, precision and recall of the approaches
CNN5, CNN8, LinearSVM5, LinearSVM8, RadialSVM5All, RadialSVM8All, Ra-
dialSVM5Best, RadialSVM8Best, RadialSVM5Raw and RadialSVM8Raw are shown.

4.1 Window and stride

The results of the window length and stride analysis are presented in Figure 5.
It can be observed in Figure 5 that the accuracy improves as the window

length increases. When recording the data for the activity Jump, there were
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Fig. 5. Analysis of the optimal window length. The best accuracy was reached with a
window length of 2.1 seconds (yellow circle).

often small pauses between the jumps, which means that the required window
must be large enough to cover the entire motion. The best accuracy values are
between 1.8 and 2.2 seconds, so these values were used in the next step for a
cross-analysis with the stride.

The results of the cross-analysis are presented in Figure 6. The x-axis initially
displays a fixed window length, after which the three strides between 0.1 and 0.3
are presented. It can be observed that the accuracy is highest for the smallest
stride of 0.1, which yields the greatest amount of data, and then declines as
the stride increases. The highest accuracy is achieved with a window length of
2.2 seconds and a stride of 0.1 seconds. These values will be used for all the
approaches in the following.
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Fig. 6. Cross analysis of window length and stride. The x-axis first displays a fixed
window length W , followed by three strides S from 0.1 to 0.3. The highest accuracy is
achieved with W = 2.2 and S = 0.1.
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4.2 CNN

The CNN was trained using K-fold cross-validation with K=5 (CNN5) and K=8
(CNN8). Table 2 shows the results of the metrics of CNN5 per fold, as well as
the results averaged over all folds.

S1 S2 S3 S4 S5 S6 S7 S8
Subject Si

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Accuracy
F1-Score
Precision
Recall

Fig. 7. Subject-wise scores for accuracy, macro F1-score, precision and recall of CNN8.
Subject S4 achieved notably lower scores.

Table 2. CNN 5-Fold comparison in terms of different metrics.

Fold Accuracy F1-Score Precision Recall
1 0.996 0.996 0.996 0.996
2 0.996 0.996 0.995 0.996
3 0.995 0.994 0.994 0.994
4 0.995 0.993 0.994 0.993
5 0.994 0.994 0.994 0.993
Average 0.995 0.994 0.994 0.994

Figure 8 shows that the tasks can be separated very well and there are only
few misclassifications.

To show the extent to which the CNN generalizes even with a LOSO-CV
approach of a subject, Figure 7 displays the scores of the 8-fold for accuracy,
macro F1-score, Review 1: Use consistent capitalization and recall. It can be
observed that subject S4 achieved notably lower scores compared to the other
subjects. The scores of subjects S2 and S3 are also well below average.

As illustrated in Figure 9, a diagonal can still be discerned in the confusion
matrix, although there is a significant increase in misclassifications. It is note-
worthy that a considerable number of tasks have been identified as Walk. Other
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Fig. 8. Confusion matrix of CNN5. Only a few misclassifications have occurred.

common errors in classification included the misclassification of Walk as Walking
up the stairs and Jump as Walking down the stairs. Furthermore, the activity
Jog was often misclassified as Jump, and the activity Rotate was frequently
misclassified as Bend.

In order to ascertain which activities can be classified as particularly well or
poorly, Figure 10 illustrates the accuracy for each activity. It can be observed
that specific movements, such as Bend or Rotate, which differ significantly from
the others in terms of execution, can be classified with the greatest accuracy.
The activity Walk is the least well-recognized.

Table 3. Comparison of the average values of CNN5 and CNN8 in terms of different
metrics

Model Accuracy macro F1-
score

Precision Recall

CNN5 0.995 0.995 0.995 0.994
CNN8 0.778 0.743 0.786 0.786

Table 3 shows the comparison of the average values of CNN5 and CNN8
in terms of different metrics. CNN5 demonstrates superior performance, as the
data exhibits greater variability across the folds.
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Fig. 9. Confusion matrix of CNN8.

4.3 SVM

The results of the optimal feature selection using RFE are shown in Figure 11.
The features comprise the nine statistical values for the six channels, resulting in
a total of 54 features. The figure displays the summed ranks of the six channels
for the respective statistical values. The lower the rank, the more important the
feature is. Therefore, the mean crossing rate was identified as the most important
feature, and the top five features were selected for further experimentation: mean
crossing rate, zero crossing rate, standard deviation, mean and variance.

Table 4 presents the averaged results of the SVM models. In a manner anal-
ogous to that observed in the case of CNN5 and CNN8, the outcomes of the
5-fold models are significantly better than those of the 8-fold models. In the 5-
fold cross-validation, RadialSVM5All achieved the most favorable results, closely
followed by RadialSVM5Best. In the LOSO-CV, RadialSVM8Best achieved the
highest scores.

Figure 12 illustrates the accuracy of RadialSVM8Best task-wise. This anal-
ysis allows us to identify which activities may be classified more or less effec-
tively. In comparison to CNN8 (see Figure 10), the results are notably more
balanced; however, Walk is also the activity that is classified with the great-
est difficulty. This phenomenon can also be observed in the confusion matrix
of RadialSVM8Best in Figure 13. Here, the activity Walk was most frequently
classified as Walking down the stairs too; other misclassifications were similar to
those observed in the CNN8.
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Fig. 10. Task-wise accuracy of CNN8.

5 Discussion

The objective of this study was to investigate the classification of activities of
daily living based on self-recorded sensor data from a non-intrusive and easy-to-
use sensor belt using a deep learning approach and a machine learning approach.
Similarly to [16], we observed that our approach to recognize activities via a
single inertial sensor worn at the waist, is both easily applicable and well-suited
for recordings in a home environment.

One limitation in our study is related to the generalizability of our models,
which were trained predominantly on data from younger individuals. Conse-
quently, these models may not perform optimally when applied to elderly pop-
ulations, as highlighted in [14,19]. To address this limitation we plan to include

Table 4. SVM metrics

Model Accuracy F1-Score Precision Recall
LinearSVM5 0.983 0.980 0.980 0.979
RadialSVM5All 0.992 0.991 0.991 0.992
RadialSVM5Best 0.998 0.975 0.976 0.975
RadialSVM5Raw 0.985 0.983 0.983 0.983
LinearSVM8 0.771 0.728 0.769 0.759
RadialSVM8All 0.763 0.728 0.788 0.755
RadialSVM8Best 0.776 0.731 0.771 0.766
RadialSVM8Raw 0.699 0.653 0.695 0.700



16 C. Krause, L. Harkämper et al.

Min Max Mean SD Var ZCR MCR PPK NPK
Features

0

50

100

150

200

250

300

Ra
nk

in
g

Fig. 11. Ranking of relevance of the handcrafted statistical features. The ranking was
calculated using RFE. Lower rankings indicate a higher relevance.

more diverse training data, particularly varying in age and mobility in the fu-
ture. Still, our study serves as a foundational investigation, demonstrating the
effectiveness of using a single sensor belt for activity recognition. This approach
is promising and warrants further exploration with datasets specifically collected
from elderly participants.

Both a person-specific system analysis and a LOSO-CV were conducted. In
the person-specific system analysis, data from all test subjects was used for test-
ing, while in the LOSO-CV, data from one test subject was used for testing.
The following section will present a comparison between the deep learning ap-
proach and the machine learning approach. Subsequently, the misclassifications
are analyzed.

5.1 Comparison of SVM and CNN

Table 5. CNN vs SVM

Model Accuracy F1-Score Precision Recall
CNN8 0.778 0.743 0.786 0.768
RadialSVM8Best 0.776 0.731 0.771 0.766

The results show that the 5-fold approaches, where all subjects were included
in the training- and test data, yielded highly accurate results, with an average
accuracy of 99.5% for the classification network and 98.95% for all SVM ap-
proaches. Only a few misclassifications were observed.
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Fig. 12. Task-wise accuracy of RadialSVM8Best.

Table 5 presents a comparative analysis of the DL approach and the ML ap-
proach, demonstrating the performance of CNN8 and RadialSVM8Best in terms
of accuracy, macro F1-score, precision and recall. In contrast, CNN8 demon-
strates slightly superior performance, yet the SVM necessitates considerably
less training time. Specifically, a single fold requires only a few minutes with the
SVM, whereas the CNN requires approximately two hours for the same task.

The results of the LOSO-CV are presented in Figure 15. A comparable trend
can be observed in the case of subjects presenting a greater difficulty level (out-
liers), resulting in similar levels of inaccuracy across the board (subjects S2,
S3 and S4). Similarly, subjects S6, S7 and S8 demonstrate the most favorable
outcomes with both approaches.

Figure 14 illustrates the receiver operating characteristic (ROC) curve for
both approaches in the optimal fold. The ROC curves of the individual activi-
ties for the RadialSVM8Best are displayed in the upper diagram, and those of
the CNN8 are displayed on the bottom. It is evident that the SVM curves are of
a high quality, whereas the CNN curves demonstrate lower performance, partic-
ularly for the classes Walk (AUC of 0.79) and Walking down the stairs (AUC of
0.55). This is attributed to the presence of issues between the classes. Further-
more, the CNN exhibits superior results for the remaining folds in comparison
to the SVM, suggesting that it may also be an outlier for this fold.

Nevertheless, the difference between the CNN and the SVM in the third dec-
imal place is marginal, which is why they can be regarded as equally good. This
can be attributed to the fact that the training set may not yet be sufficiently
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Fig. 13. Confusion Matrix of RadialSVM8Best.

comprehensive for a DL approach, resulting in comparable performance between
traditional and DL methods, which may be preferable in certain circumstances.
These findings are consistent with the results of related studies that have em-
ployed a similar analytical approach.

This study did not examine more sophisticated DL architectures that are
well-suited for temporal data. This may also be a reason why a traditional DL
network is inadequate for processing this data.

5.2 Misclassifications

The two approaches (CNN and SVM) were trained with K-fold cross-validation,
with K=5 and K=8, respectively. At K=5, all subjects were distributed evenly
across the folds, resulting in the absence of outliers. This explains the high scores
and the low rate of misclassification.

In the LOSO-CV, one subject is omitted from training in each repetition,
and the classifier is then tested on this subject. Consequently, it is possible to
identify significantly larger differences between the folds. In particular, subject
S4 exhibits a notably low level of accuracy when classified with the CNN (see
Figure 7. It was apparent from the outset of the data acquisition process that
subject three displayed a markedly unusual range of movements. These included
a tendency to walk or run upstairs with a pronounced strolling gait, as well as a
pronounced lateral movement when rotating. Consequently, his data exhibited
a notable divergence from the mean, rendering him an outlier within the data
set. This could be a potential explanation for the observed lower scores.
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Fig. 14. ROC curves for the RadialSVM8Best (left) and the CNN8 (right) of Subject
S7.

All experiments employing the LOSO-CV methodology demonstrate com-
parable misclassifications of movements. The frequent misclassification of the
activity Walk as a separate movement is likely due to the fact that this move-
ment is often part of other activities, such as Walking down the stairs or Walking
up the stairs. As a consequence of its inclusion in almost all other movements,
it is arguably the most challenging to distinguish from the others.

The classification of Walk as Walking up the stairs was likely due to the pres-
ence of a plateau on the stairs and subjects’ slow pace of ascent. Furthermore,
the classification of Jump as Walking down the stairs was based on the observa-
tion of a similar acceleration on the z-axis and a gait that resembled jumping.
Similarly, the activity of Jog was misclassified as Jump due to a similar acceler-
ation observed on the z-axis. The classification of Rotate as Bend was likely due
to the observation that a significant proportion of subjects exhibited a slight hip
rotation when bending, particularly when only one arm was moved towards the
floor.

6 Conclusion

In order to maintain the independence of older people for as long as possi-
ble, the activities of daily living should be tracked regularly so that changes
in behavior can be detected as early as possible. In this study, the recognition
of eight different activities was investigated using deep learning and machine
learning approaches. For this purpose, a self-recorded data set of eight subjects
was applied, whereby accelerometer and gyroscope data were recorded. A clas-
sification network and various SVM approaches were analyzed. Two data splits
were examined: a subject-specific one, in which the training data consisted of all
subjects, and a LOSO-CV, in which one subject was excluded from the train-
ing and was used for testing. The person-specific approach achieved accuracies
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Fig. 15. Subject-wise accuracy of CNN8 and RadialSVM8Best. Subjects S2 and S3

and S3 achieve the lowest accuracy.

of 99.5% and 99.8% for the CNN and for the best SVMs. Also, the LOSO-CV
results in appropriate accuracies of 77.8% for the CNN and 77.6% for the best
SVM. A number of misclassifications have been identified, some of which are
attributable to data recording errors. In summary, the SVM and the CNN yield
comparable outcomes, with the CNN demonstrating marginally superior results
but also significantly longer training times. In conclusion, the preferred choice
of the classifier might depend on the circumstances. On the one hand, the SVM
might be the right choice if low computational complexity is preferred, e.g. for
real-time systems. On the other hand, if classifier performance is of more impor-
tance and the long training time can be disregarded, then CNN might be the
better choice.

As was recognized in the LOSO-CV variant, a high data variance is impor-
tant. It could therefore be useful to include additional test subjects in order to
better compensate for outliers such as test subject S3. In addition, a similar
group of people is currently covered, in which the activities do not differ greatly.
Therefore, subjects from different age groups could also be included.

For future work, other ML or DL methods could also be taken into consid-
eration. Given that the data are time series, network architectures that contain
temporal components, such as recurrent neural networks (RNNs) or long short-
term memory (LSTM) networks, could be tested. With regard to the SVM,
further features could be investigated that originate from areas other than the
time domain, such as Fourier coefficients. A combination of both approaches
could also be investigated. In order to avoid the use of hand-crafted features, a
CNN could be employed to identify relevant features. Subsequently, a SVM could
be utilized to estimate the correct activity class based on the selected features.
We can conclude that using one easy-to-use, non-intrusive IMU sensor is able to
model dynamic movements and can be successfully used for the recognition of
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ADL using traditional ML methods such as the SVM, as well as DL methods
such as CNNs.
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