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ABSTRACT
Human Activity Recognition (HAR) represents an important task
for many healthcare applications. From the perspective of devel-
oping patient-specific solutions, it is clear how the use of artificial
intelligence enhances the potential of HAR. The present work set-
tles its roots in the context of early-diagnosis of neurodevelopmen-
tal disorders in children (Autism Spectrum Disorder, ASD) and in
the evaluation of their motor skills. In this paper, we present an
artificial intelligence-based approach for fine-grained HAR which
relies on dead-reckoning applied to data collected through inertial
measurement units (IMUs). This approach has been applied on a
dataset collected through IMU-embedded toys in order to validate
its feasibility in the inference of infants fine-grained motor skills.
The proposed solution’s workflow starts from the estimation of the
orientation and position of solid objects through dead- reckoning
exploiting Kalman filters and moves to the extraction of informative
features, which are then used to feed a Temporal Convolutional
Network (TCN). The achieved training average accuracy of 89%
highlights how such a non-intrusive approach reaches great per-
formances on HAR tasks, even overcoming the limitations of most
of the works already present in literature, based on wearable sen-
sors and/or computer vision techniques. The presented work and
achieved results represent a solid base for IoT-based systems aiming
at supporting clinicians in the early diagnosis of ASD in children.
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1 INTRODUCTION
Human Activity Recognition (HAR) is a rapidly growing field of
research with applications in areas such as healthcare, sports, and
security. The present work settles within the context of digital
phenotyping of Autism Syndrome Disorder (ASD) [1] [2] [3] [4]
which exploits clinical research, IoT, and computer vision to ana-
lyze children’s play behavior and the motor peculiarities related
to autism syndrome from different points of view: manipulation
of the toy, posture, body movement, and exploratory activity of
the surroundings. Many pedagogists and psychologists recognize
that play is a fundamental way of learning [5]. Many models have
been proposed to describe the relationship between children’s play
and their development [6] [7] and it has already been assessed
that neuro-developmental disorders, such as ASD, affect the typical
development of play behavior in children. Additionally, existing
studies on children’s behavior have a strong focus on children’s
social, emotional, and cognitive development [8], while little atten-
tion has been dedicated to the sensory-motor aspect of play [9].
In this context, our mission is to advance the SoA by simulating
and studying children’s play behaviors from the perspective of
sensory-motor developments exploiting a non-invasive approach
based on toys inertial measurements to support the early diagnosis
of ASD, and to allow the anticipation of the intervention, which
has been demonstrated to be more effective. From this standpoint,
our current aim is to break down play behavior into sequences of
fine-grained motor patterns with the intention of identifying and
classifying some specific play actions or gestures. In our previous
research, we investigated which play actions resulted as significant
and measurable for the identification of ASD in target age of infants
between 9 to 15 months [2]. The purpose of this paper is not to
propose a specific methodology for ASD automatic play activity
recognition but in turn we intend to demonstrate the feasibility of
automatic recognition from a subset of the aforementioned actions
exploiting an innovative fine-grained HAR approach.
Traditional methods for HAR often rely on sensor data from wear-
able devices or cameras, which can be used singularly or in parallel
exploiting sensor fusion techniques, although using multiple sen-
sors adds complexity in synchronizing different sources of data. In
recent years, HAR deep learning approaches have grown in interest,
despite the large amounts of labeled data and high computational
power required, since they outperformed old machine learning-
based approaches [10] [11] [12]. The present work’s operational
pipeline (Section 2) relies on inertial data to estimate positions that
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an object occupies in space exploiting the dead-reckoning approach.
Dead reckoning is a fundamental process in navigation where ex-
ternal references, such as landmarks or GPS signals are unavailable.
For example, it is crucial for Unmanned Aerial Vehicles (UAVs) be-
cause it can be used as a control technique assuming the current
position estimate as accurate and calculating new control signals
based on this estimate relative to a desired position in situations
where GPS signal is lost [13]. For HAR purposes, this approach has
not been deeply investigated in literature due to its challenging
and intrinsic drift over time. Drift error can occur due to various
factors such as changes in the user’s walking speed, turning angles,
or environmental conditions. These factors can cause the inertial
sensors to accumulate errors over time, leading to inaccuracies in
the estimated position and ultimately affecting the accuracy of the
activity recognition. To mitigate the effects of drift error, various
methods have been proposed in literature. These include sensor
fusion techniques that combine multiple sensor modalities such as
inertial measurement systems (IMUs) and GPS or cameras, when
available, to improve the accuracy of the estimation. Alternatively,
Kalman filters have been proposed to model the drift error and
correct it in the estimation process. An example of usage of Kalman
filters for HAR purposes can be found in [14], where the authors
introduced a novel algorithm based on a quaternion representation,
allowing accelerometer and magnetometer data to be used in an
analytically derived and optimized gradient descent algorithm to
compute the direction of the gyroscope measurement error as a
quaternion derivative. We embraced the latter approach focusing
our study on a single IMU sensor, whose signals are filtered and
processed in order to obtain relative positions to feed neural net-
works and perform the classification task.
Section II describes in detail the workflow followed in the present
study, with a comprehensive explanation of all its steps. Section III
contains the results obtained and contextualizes them accounting
also for the time-dependent nature of the signals. Finally, Section
IV summarizes the findings of our work, expresses the limitations
encountered, and provides some insight for future studies.

1.1 State of the Art
Different approaches can be found in the literature and many of
them explored HAR tasks through deep learning models. Some
methods rely on image processing. For instance, Ito et al. in [15]
use acceleration and gyroscope values to compute a Fast Fourier
Transform obtaining images used to feed a Convolutional Neural
Network to perform classification. Instead, [16] aims to provide
health monitor to patients through HAR. They started from raw
acceleration data and exploited continuous wavelet transform to
compute 2D images used as input of a Convolutional Neural Net-
work.
There are also deep learning approaches based on raw signals such
as [17], which fed a Long Short Term Memory network with raw
accelerometer data to perform classification on WISDM Lab public
dataset which includes coarse-grained activities (walking, standing,
and jogging). Further, [18] forewent recurrent architectures and
proposed a self-attention-based network on raw accelerometer data
evaluating the network on different public datasets.

Other approaches are based on object tracking aiming at predict-
ing the 3D position of an object with time. Several works involve
pedestrian tracking through IMU sensors. This scenario introduces
the possibility of using algorithms exploiting the intrinsic period-
ical frequency of the movements. For example, Fourati et al. in
[19] introduced a foot-mounted Zero Velocity Update-aided IMU
filtering algorithm for indoor pedestrian tracking. This algorithm
assumes that the traced object (foot) assumes periodically a static
position that can be used to adjust drifting errors. Hou et al. in [20]
suggested that the head is a valid alternative to place the sensor on
for pedestrian tracking, in fact, they provided a specific Pedestrian
Dead-Reckoning method designed for head-mounted sensors. This
method belongs to the field of Step-and-Heading Systems and aims
to detect each step of the pedestrian by estimating its length and
direction. Finally, it integrates every step to obtain a complete tra-
jectory.
When the problem does not involve periodical movement, sensor
fusion techniques are used, combining IMU and other long-term re-
liable sensors. Toy et al. in [21] used an improved Dead-Reckoning
localization system using IMU sensor to improve Global Navigation
Satellite System-based vehicle localization when the satellite signal
is denied.
Brossard et al. in [22] proposed a method to track vehicles based
only on IMU sensors. They used a Kalman Filter and a neural net-
work to dynamically adapt the noise parameter. They evaluate the
method on the KITTI odometry dataset reaching performances
comparable to top-ranked methods which, by contrast, use LiDAR
or stereo vision. Very fewworks about fine-grained HAR performed
through not-worn sensors can be found in literature [3] [23].

The present work is focused on the development and imple-
mentation of a dead-reckoning-based system for human activity
recognition. Dead-reckoning, a technique commonly used in navi-
gation and robotics, will be employed to estimate the orientation
and position of IMU-embedded toys (a car and a ball). The inertial
data will then be processed and analyzed to recognize and classify
various fine-grained human activities related to the play.
The goals of this work are: i) To demonstrate a methodology which
enhances the accuracy and efficiency of HAR systems, particularly
in environments where traditional methods, such as GPS, may be
limited or unavailable; ii) To prove the feasibility of an approach
which could be applied to ASD children, that are characterized by
hypersensitivity and thus intolerance to wearable sensors. More-
over, the proposed approach does not rely on any computer vision
technique, thus eliminating the necessity of cameras that record
the space the subject is moving into. The outcomes of this research
will potentially have a significant impact on fields ranging from
healthcare and fitness monitoring to augmented and virtual reality
applications.

2 METHODS
The workflow followed for our purpose has been divided into three
major tasks:

(1) Dead-reckoning, to estimate position from inertial raw data
(2) Feature extraction
(3) Classification through neural networks
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Figure 1: Detailed workflow.

2.1 Dead-Reckoning
In navigation, dead-reckoning is the process of estimating the posi-
tion of a moving object from IMU sensor only.
Dead-reckoning is a kind of path integration: by integrating the
acceleration of an object twice, its position can be obtained. IMU
sensors provide angular velocity and acceleration. The latter term
incorporates a constant gravity component we want to get rid of.
Since we do not know gravity’s components projections over the
three axes of the IMU but only its magnitude, to retrieve the accel-
eration of the object it is necessary to find the orientation of the
sensor and rotate it in the reference plane to isolate and remove
gravity from the vertical axis, then rotate the sensor again and
integrate the acceleration twice (see Figure 2).

Figure 2: Dead-reckoning pipeline: inertial measurements
are integrated to obtain position and orientation [24].

Theoretically, dead-reckoning seems to work perfectly but, prac-
tically, the computation of integrals hides some challenges. In fact,
the process involves three integrals: one integral for orientation
estimation and two subsequent integrals for position estimation.
Since the input of the integrals are sensor measurement values, the
measurement error is carried into the computation and it grows
in a nonlinear way. Moreover, the double integration for position
estimation carries the integration constant, thus leading to signal
drift. For this reason, tracking becomes infeasible (see Figure 3).

Figure 3: Unbounded growing error on simple path tracking
through dead-reckoning double integration [25].
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The explored approach replaces orientation estimation with
an Extended Kalman Filter and position estimation with a Lin-
ear Kalman filter. Kalman Filters are Hidden Markov Models that
produce estimates of hidden and observed variables by predicting
the next values merging an estimate of the following value with its
effective measured value. The estimate takes into account the noise
of the process and the noise in the measurement values. The dead-
reckoning process takes advantage of Kalman filters by reducing its
intrinsic drift error. The detailed pipeline is shown in Figure 1. From
IMU-embedded toys, raw acceleration values are collected and go
through an Extended Kalman Filter that returns an estimation of
the orientation. Orientation estimation helps obtain the object ac-
celeration since the gravity component can be easily removed once
the sensor has been rotated into the earth frame reference, where
the gravity component is known. Then acceleration is smoothed
through a moving average filter and detrended before going into
a Linear Kalman Filter to obtain position estimation which can be
turned into relative positions.

This part of the pipeline manages the limitation of the drift error,
by applying a form of correction: every position is transformed
into the relative position vector related to the previous position
(see Figure 4).

Figure 4: Comparison of absolute and relative errors [26].

Processing is possible because the aim of the project is not track-
ing but activity recognition. By transforming each position into a
relative position vector related to the previous position, the pipeline
mitigates the effect of drift error. This approach is sufficient for
activity recognition since the relative changes in position can still
reflect the characteristics of different activities. Absolute position
accuracy is not crucial in this context. What matters is the relative
movement patterns, which can still be accurately derived despite
some level of drift or position error.

To correctly initialize the process noise covariance matrix of the
Extended Kalman Filter we used the noise values along the 3-axes
provided by the Shimmer3 IMU datasheet.

2.2 Features extraction
The following step is to generate an instantaneous displacement
signal where each sample represents the differential position with
respect to the previous one. Finally, the signal is segmented into 0.6
seconds-long non-overlapping windows used as temporal support
to build a signal representation suitable for neural networks. In
particular, each window was transformed into an image in order to

feed a particular type of convolutional neural network as explained
in Section 2.3. Each image is built by stacking the three axial-vector
components one upon the other (see Figure 5).

Figure 5: Chunked signal image representation.

2.3 Model selection and training
In [23], it was demonstrated that traditional machine learning ap-
proaches perform well on coarse-grained activity recognition but
showed also a consistent performance drop when applied to fine-
grained activity recognition. In this study, instead, we exploited a
deep learning approach based on a Temporal Convolutional Net-
work (TCN), a particular type of Convolutional Neural Network
(CNN) that was first proposed by Lea et al. in [27] capable of cap-
turing both spatial-temporal features like a CNN and high-level
temporal information as a Recurrent Neural Network (RNN). Figure
6 presents the architecture of the model. A single TCN layer (num-
ber of filters = 108; kernel size = 6; dilations = 1,2,4 and 8; activation

Figure 6: TCN model architecture capable of capturing
spatial-temporal features.
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function = ReLU) output flows into two parallel pooling functions
and then is concatenated. Batch normalization is applied and the
model is regularized through dropout. Then, there is a flattening
layer and a series of dense layers until the output passes through a
softmax function that returns a vector of probabilities.

2.3.1 The dataset. A synthetic dataset has been collected using
Shimmer3© IMU sensors by two different subjects (adults) simu-
lating the play behavior of children with two different toys: a ball
and a car. For each toy, a set of activities has been investigated
(see Table 1), particularly the ones that resulted in the most fre-
quently chosen by children in a previous study [2]. Each activity
was recorded for 30 seconds from both subjects at a sample rate of
100 Hz. While the sensor embedded in the ball was placed inside of
it, instead, the sensor embedded in the car was placed inside one
of its wheels, in order to be able to differentiate among different
fine-grained activities. These activities have been performed in an
indoor environment.

Table 1: Performed activities divided by toy.

Ball
Throw Roll Shake Spinning top

Car
Flip Slide Hit Spin wheels

2.3.2 Training methodology. A training set (TRS) and a test set
(TS) were derived from the original dataset, which was composed
of 2’396 observations. In particular, TRS contained 75% of observa-
tions and TS contained the remaining 25%. In order to account for
the temporal nature of the data, it was adopted a custom splitting
approach which did not contemplate any shuffle of the data. It was
decided to divide each window into two portions: the first one as-
signed to TRS and the second one assigned to TS. The network has
been separately trained on the two toys using cross-entropy and
ADAM as loss function and optimizer, respectively. The training has
been done on 300 epochs using a batch size of 32. All the exploited
hyperparameters have been properly tuned.

The code associated with this project is accessible via Zenodo at the
following link: https://zenodo.org/doi/10.5281/zenodo.13623602.

3 RESULTS AND DISCUSSION
3.1 Results on car toy
The car toy-related fine-grained activities are four: spinning wheels,
knocking, flipping, and sliding (typical activities performed by Typ-
ical Development - TD and Not Typical Development - NTD chil-
dren). Results are shown in Figure 8. The network reaches a training
accuracy of 89% and a test accuracy of 69%. From the confusion
matrix, it can be noticed that the network is stronger in predicting
’hit’ activity but it does not meet performance expectations when
it has to differentiate between ’slide’ and ’spin wheels’.

3.2 Results on ball toy
The ball toy-related fine-grained activities are four: throwing, rolling,
shaking, and spinning top. Results are shown in Figure 9. The net-
work reaches a training accuracy of 83% and a test accuracy of 60%.
From the confusion matrix, it can be noticed that the network is
more accurate in predicting ’shake’ but it struggles in differentiating
between ’roll’ and ’spin’ (spinning top).

As we expected, recognizing ball activities is harder than rec-
ognizing car ones because the sensor is placed inside the ball and
the activities of rolling the ball and spinning the ball from the top
are both based on a rotation of the toy but, while during the first
the ball moves through space, instead, during the second it rotates
with a fixed contact point on a surface.

3.3 Exploiting time-series continuity for
predictions

The test accuracy is the canonical metric used for performance
evaluation. It is the sum of all correct predictions over the total
samples. Considering activities as chunks of signals completely
independent from each other can be misleading because we lose
the concept of temporal continuity of time series. We can exploit

(a) Car

(b) Ball

Figure 7: Continuity validation method. Test accuracy in-
creases as the window size increases.

https://zenodo.org/doi/10.5281/zenodo.13623602
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Figure 8: Results on car toy.
TOP Cross-entropy loss.
MIDDLE Model accuracy.

BOTTOM Confusion matrix.

Figure 9: Results on ball toy.
TOP Cross-entropy loss.
MIDDLE Model accuracy.

BOTTOM Confusion matrix.
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the intrinsic continuous nature of the signal for the prediction
task. The idea is that for the 𝑖𝑡ℎ chunk, the prediction is the most
present value in a window centered over it. For instance, by taking
advantage of this simple but effective technique it is possible to
correct a prediction error caused by an occurrence of some activity,
namely ’B’, predicted within a sequence of another activity, namely
’A’, in a certain period of time.

Figures 7a and 7b clarify how this simple practice significantly
improves the performance of the proposed approach. On the y-axis
there is the accuracy value while on the x-axis there is the window
size. A window size of 1 stands for looking only at the raw predic-
tions of the model, while the next values use the validation method
explained before.
There is a positive trend in accuracy that tends to increase with
the window size, in fact, the model has less possibility to return an
error when it also considers the predictions in the chunk before
and after the current one. This is true because the model is not
random guessing. Given a certain increment in window size, the
accuracy improvement resulted higher if the baseline accuracy was
higher. In fact, given a window size of 3, the network trained for
the car increased about 10% in test accuracy against the baseline,
while the one trained on the ball increased about 8%. A window
size of 3 is already promising, and larger sizes appear to be even
more performant. However, longer window sizes result in higher
performance only when the child engages in a specific play activity
for a longer time. Such a case becomes increasingly implausible as
the size of the window increases.

Summing up, it is clear how considering a wider window for
activity predictions helps the proposed approach to identify the
true activity in the current chunk.

4 CONCLUSIONS
The present work wants to be an alternative approach for fine-
grained human activity recognition based on dead-reckoning and
temporal convolutional networks. The proposed method aims to
extract features from inertial data applying Kalman filter-corrected
dead-reckoning and accurately classifying specific actions or ges-
tures performed by individuals. The novelty of the present approach
relies on the combination of Kalman filters and neural networks to
successfully accomplish the HAR task using the former to mitigate
errors and transform absolute positions into relative ones to train
the latter. Moreover, for the present work the inertial dataset has
been collected through smart toys (IMU-embedded toys) thus dif-
fering from many wearable-based approaches present in literature
[28] [29] [30], which seem to outperform our approach reaching
even more than 90% accuracy. However, this is an unfair compari-
son because of two main reasons: (i) many works in literature are
based on non-hand-oriented activities, such as walking or going
upstairs, which are intrinsically simpler to recognize with respect
to the hand-oriented activities this works focuses on; (ii) the nature
of data itself. In fact, wearable devices worn by a subject produce
more deterministic inertial data than IMU-embedded toys since
they are constrained to move with the subject himself. In layman’s
terms, these devices will produce comparable signals if the same
activity is performed, while this assumption is not always true for

IMU-embedded toys. In conclusion, our approach shows the po-
tential of combining dead-reckoning and temporal convolutional
networks for fine-grained human activity recognition in a differ-
ent domain with respect to other related works. The presented
approach can find many applications related to the broad spectrum
of ASD. For instance, the identification of "lower-order" motor rep-
etitions which include toys manipulation, repetitive play patterns,
banging toys together, toy tranfer from one hand to the other, etc.
[31][32]. From a clinical perspective, the last two belong to the
milestones in children neurological development [33].

The main limitations of the presented approach rely on the re-
duced number of tasks analyzed, either in terms of activities and
exploited toys. However, we remain confident that the present work
can represent a solid base for future works in the perspective of
developing IoT systems capable of supporting clinicians in the early
diagnosis of ASD, and capable of distinguishing different pheno-
types of autism with the intention of delivering patient-specific
treatments [4]. Future works will focus on overcoming the afore-
mentioned limitations. For instance, they could focus on further
refining the dead-reckoning estimation process to reduce drift error
and improve the accuracy of HAR or on training new networks for
other activities in order to investigate more deeply the potentiali-
ties of this approach. Moreover, such a system could be integrated
with computer vision techniques, such as the one presented in [28],
in order to build multimodal diagnostic systems that provide new
informative viewpoints and improve the treatment quality. The
presented feasibility study assessed our methodology over data
from adults, so, to further generalize it, we are currently collecting
data to test the proposed pipeline over a wider and more variegated
pool of subjects comprehending children with ASD.
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