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Abstract. In this paper we present SurfSole, an untethered mobile system com-
bining a smart sole prototype and mobile app to achieve real-time surface iden-
tification. We solely rely on the technology of capacitive sensing while choos-
ing a neural network approach for classification. We evaluated different ma-
chine learning models with different layer architectures of 3-4 layers with 32,
64, 128, and 256 filters. The theoretical overall accuracy reaches from 74.85% up
to 87.11%. While we retrieve data with 40Hz with a single window of 120 data
points, we have a real-time detection delay of 3s.
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1 Introduction
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Fig. 1. Demonstrating SurfSole: The insole prototype, consisting of 6 copper electrodes, and a
small box of electronics is worn on the right foot, while our mobile app "SurfTastic", running
on an Android Smartphone detects the current terrain surface one is walking or running on.

Technological advancements are continuously transforming our daily lives, with
wearable technology emerging as a crucial area of innovation. Current wearable tech-
nologies, such as smart insoles, also but slowly emerge. Currently, the primarily func-
tion of smart insoles is measuring pressure distribution for gait analysis, including
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a multitude of sensors, such as force-sensitive resistors [15], capacitive sensors [14],
piezos [6], and other [7]. While these insoles are often in the stage of prototypes, they
usually lack the capability to accurately identify the user’s context, such as under-
standing the different surface types one is walking on. This may be a crucial informa-
tion, while it can infer on the dynamic outdoor environment and the runner’s energy
expenditure. While there is a variety of sensors deployed with insoles, capacitive /
electric field sensors [11], known for their sensitivity and versatility, offer a poten-
tial solution for this challenge by detecting subtle changes in capacitance caused by
different surfaces.

Modern capacitive pressure sensors often utilize materials like polydimethylsilox-
ane (PDMS) and thermoplastic polyurethane (TPU) as dielectric layers [19]. These ma-
terials provide the necessary flexibility and durability for wearable applications [24].
Advanced insoles incorporate arrays of capacitive sensors to capture detailed pressure
distribution across the foot, allowing for high-resolution mapping of plantar pressure
[22, 17]. This is crucial for applications in gait analysis and posture correction [17, 18].
Capacitive sensors are often integrated together with accelerometers and gyroscopes
to provide comprehensive data on gait and movement, enhancing measurement accu-
racy and reliability [16]. Real-time feedback on plantar pressure is important for the
wearer as it can invoke a direct behavior change, such as helping to correct posture and
improving balance, benefiting athletes and individuals undergoing rehabilitation [20].
The most related works are "PneuShoe" [7] and "CapSoles" [14], mobile shoe/insole-
based systems that enable surface detection using conventional machine learning and
enabling the distinction between sand, lawn, paving stone, carpet, linoleum, and tar-
tan.

This paper presents SurfSole, a prototype system that consists of a redesigned in-
sole capable of collecting capacitive data from various surfaces during walking or run-
ning. The collected data is processed using a Convolutional Neural Network (CNN) to
classify the terrain type in real-time. The key contributions of this work include:

– Development of a slim and lightweight insole integrated with capacitive sensors
and a compact controller for seamless data collection,

– Implementation of a data collection protocol using a mobile application,
– Design of a CNN model capable of distinguishing between multiple surface types

with high accuracy,
– and the integration of the model into a mobile application, providing real-time

feedback on the terrain type one is walking and running on.

2 Implementation

The prototype consists of several hardware components, including the insole, con-
troller & PCB, and housing & more. Moreover, a software was developed, which con-
sisted of several distributed parts, running on the microcontroller, server, and on an
android app.
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Fig. 2. a) Prototype with opened case, b) Opened insole displaying the copper electrodes.

2.1 Insole

We evaluated several materials for the insole as a basis. The soft insoles from Budni
drugstore [4] satisfied our needs. We implemented a total of six copper patches to the
bottom side of the insole with double-sided tape. The copper patches [3] are origi-
nally used for snail protection in gardening but do just fine as capacitive sensing. Six
electrodes resulted in 6 wires, which we integrated into a 6-pin cable with an RJ12
connector, which is an easy attachment to the case.

2.2 Controller & Circuit Board

Our printed circuit board (PCB) was designed to accommodate the pin layout from
the ESP32 microcontroller board. The ESP32 conveniently incorporates a Bluetooth
LE module, enabling a connection to the smartphone. Since the prototyping breakout
board, which matches the development board, has interconnected sides, the circuit
had to be designed extremely carefully, using isolated bridges for some connections to
avoid short circuits. Our custom OCB utilizes both sides due to the unavailability of a
single ground port. The placement of the PCB is in close proximity to the controller, to
ensure relatively high integration density. The bulkiest part however, is the 9V battery.

2.3 Housing & More

The housing must accommodate a 9V LiPo battery. This 9V battery contains an inter-
nal regulator that provides a flat discharge curve against electrical jitters and noise,
which would otherwise be present in measurements of analog signals, to ensure sta-
ble and reliable performance during the analysis. By using the compact shape of the
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battery and choosing a short development board for the controller, we were able to
design a relativly slim case (approx. 4.5cm x 6.5cm x 2cm). The choice of a compact
development board led to the ability to use a matching prototyping board that could
sit directly under the controller, eliminating the loosely "integrated" circuits for sens-
ing and a notification LED. The case has been designed using advanced 3D modeling
projection techniques in Fusion 360 [1] by Autodesk. This design process involved
multiple iterations.

(I) Confusion matrix a (II) Confusion matrix b

(III) Confusion matrix c (IV) Confusion matrix d
Fig. 3. Confusion matrices of different neural networks: (I) 3 layer CNN with 16, 32 & 64 filters,
resulting in up to 74.85% accuracy; (II) 3 layer CNN with 32, 64 & 128 filters, resulting in up to
84.82% accuracy; (III) 4 layer CNNwith 16, 32, 64 & 128 filters, resulting in up to 84.73% accuracy;
(IV) 4 layer CNN with 32, 64, 128 & 256 filters, resulting in up to 87.11% accuracy. Classes: a)
beach sand, b) clay turf, c) lawn, d) pavement, e) synthetic turf, and f) tartan.

3 Evaluation

3.1 Data Collection

As previous work already demonstrated some sort of study using conventional ma-
chine learning, we aimed to focus on emerging machine learning techniques, namely
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training a neural network model. Our objective was to obtain a minimum of 10 min-
utes of data per person, with each individual walking or running on each surface. To
collect the required vast amount data for training a neural network, we utilized a mo-
bile application developed with the Flutter framework [9]. This application facilitates
communication with the controller software, enabling the initiation and termination
of data recording through the continuous transmission of data via Bluetooth, a mea-
sure designed to conserve energy. The user interface of the application allows for the
configuration of multiple data labeling parameters, including the username, surface
type, surface condition (dry or wet), and shoe type. Upon completion of the recording,
the app transmits the data to the SurfSole Data App, as illustrated in Figure 1. This web-
based application enables real-time data verification, facilitating prompt detection and
resolution of potential issues related to insole damage or Bluetooth connectivity dis-
ruptions.

walking
running

beach sand
clay turf
lawn
pavement
synthetic turf
tartan

a b

Fig. 4. Distribution of data collected: a) Distribution on walking style, b) Duration per surface
type.

With two participants, we collected around an hour of training data in total. This
is an adequate quantity of data to commence the ml model training phase. Figure 4
shows the distribution of our collected data in terms of walking speed, and surface
type. Due to the lower energy exposure, walking speed is slightly more prevalent than
running, as well as the surface types, which include pavement, tartan, and lawn, which
are slightly more prevalent than, for example, beaches. Upon downloading the data
from the SurfSole Data App, a zip file containing 982 CSV files has been generated for
further data processing.

3.2 Model Training

Since we want to create some kind of real-time interaction, the network must be ca-
pable of performing classification on brief sequences. Additionally, the interrelation
between two subsequent steps in a sequence may diminish with the passage of time.
This is particularly evident when a step directly follows another, as the likelihood of
them occurring on the same surface is high. In light of these considerations, a con-
volutional neural network (CNN) emerged as a promising initial approach, which is
already indicated in literature [13].We initially employed Keras, which precisely aligns
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with our objective, even though it requires the use of six channels [5].As Keras is basi-
cally an integrated part of Tensorflow [23] nowadays and Tensorflow has an option to
convert a trained model to a smartphone friendly TensorFlow Lite [12] model, it was
evident that the TensorFlow framework was the optimal choice for implementation.
In accordance with recommendations, such as from Towards Data Science [21], we
evaluated several iterations of the original network until we identified four candidate
networks.

3.3 Results

The networks with 3 to 4 layers with 16 or 32 initial filters with doubling amount from
layer to layer were trained on sequences as short as 40 to 120 datapoints (about 1-3
seconds walking or running) and came to acceptable results on an extracted testing
data set as the confusion matrices in figure 3 clearly show. Eventually, our models
converged after 71 epochs. Our results confirm that the detection of 6 diverse surfaces
is feasible with a relatively modest CNN on brief sequences. However, as shown in
figure 3, the accuracy remains highly variable across our four models; I) 74.85%, II)
84.82%, III) 84.73%, IV) 87.11%, indicating that the training process may require further
optimization or additional data for training.

4 Real-Time Application

The exported TensorFlow Lite [12] model has been packaged into a mobile app, built
with the dart-based [8] framework Flutter [9]. Further, we used the Flutter TFLite [10]
package to distinguish the surface. In our app, we are able to select different models
and adjusting some threshold settings to improve accuracy. The classification of the
surface is triggered every 120 received data points. At a frequency of approximately 40
Hz, the detected surface in the SurfTastic app is updated roughly every three seconds
if the confidence of the neural network’s output is above 80% .

5 Discussion

5.1 Benefits & Key insights

Creating and putting SurfSole into action as a product would mean a major step for-
ward in wearable tech and sports industry. For instance, identifying the terrain has
a major impact when it comes to reduce running injuries and to optimize running
performance.

The sleek case and compact development board improved the hardware design
makes it comfortable for users and more reliable in comparison to most other proto-
types demonstrated in literature. Using Bluetooth LE in combination with the SurfSole
data collector app works perfectly with 40Hz data. Having the data directly on the
phone enables for many more applications than just identifying terrain. The smart-
phones’ power nowadays enable our app’s for real-time data labeling makes it a reli-
able platform for prototyping.
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The evaluation of different neural network architectures revealed thatmodest CNN
could effectively classify surfaces based on brief data sequences. However, the accu-
racy varied significantly under different conditions, indicating the necessity for further
optimization and extensive training data.

5.2 Challenges and Limitations

One of the major challenges encountered was the variability in the collected data. Dif-
ferent walking speeds, surface types, and environmental conditions (e.g., wet or frozen
surfaces) significantly impacted the model’s accuracy. This variability underscores the
need for a more extensive and diverse dataset to train the neural networks adequately.

The current models demonstrated acceptable performance under controlled con-
ditions but struggled under variable real-world conditions. Future work should focus
on enhancing the robustness of the models through extensive data collection and pre-
processing techniques such as normalization.

6 Conclusion & Future Work

In conclusion, the SurfSole project demonstrates a significant step forward in wear-
able technology and surface detection. By leveraging capacitive sensing in conjunc-
tion with neural networks, the prototype successfully identifies various terrains in
real-time with an accuarcy of up to 87.11%. In our real-time implementation we can
see that these results may be not always obtainable. In reality, we face many varying
variables that impact accuracy. For instance, one day we might have slightly different
weather conditions than other days (e.g., the surface is wet, slightly frozen, and there-
fore a harder surface). As we performed our tests in winter, we exactly faced these
issues.

One of the most urgent next steps is to collect a significantly larger dataset for
training the NN models, as the currently trained models still exhibit weak robustness.
A broader dataset will result in adjusting the current network architecture and opti-
mizing training parameters to improve for generalization. Currently, we deal with raw
data. It is an open question whether pre-processing techniques such as regularization,
normalization, etc. can help to significantly improve the model. Bagnall et al. [2] sug-
gests it might further enhance the models’ robustness.
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