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Abstract
Cognitive fatigue may have significant results if not intervened in
factories, automobiles, and office environments. Development of a
system for monitoring cognitive fatigue in real-life settings using
unobtrusive wearable devices can help to minimize health problems,
and work and car accidents. Photoplethysmography (PPG) sensors
offer an unobtrusive way to track changes in heart rate and heart
rate variability (HRV), which are indicative of cognitive fatigue
levels. In this study, we propose a personalized PPG normalization
technique to reduce inter-subject variability and enhance the per-
formance of machine learning algorithms in classifying cognitive
fatigue. The best-performing model, a Random Forest Classifier,
achieved an accuracy of 80.5% in binary classification and demon-
strated robust performance in regression tasks as well. The study
highlights the potential of PPG-based wearables for non-obtrusive,
long-term monitoring of cognitive fatigue, which could aid in pre-
venting health issues associated with chronic fatigue.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; HCI theory, concepts and models;
• Computing methodologies → Neural networks; Supervised
learning by classification.
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1 Introduction
When ongoing stress at work isn’t handled well, one of the possible
outcomes is a cognitive fatigue state. Although it’s not a medical
disorder, it can happen in any stressful work or home setting and
is acknowledged by the World Health Organization (WHO) as a
syndrome [15]. In the short term, cognitive fatigue can lead to prob-
lems like trouble sleeping, anxiety, irritability, and hormonal issues.
Over time, it can cause more serious health problems, including
including multiple sclerosis, Parkinson’s disease, and traumatic
brain injury [6].

Cognitive fatigue can be evaluated by examining the autonomic
nervous system (ANS) [18]. One way is to monitor changes in physi-
ological signals. The ANS includes the sympathetic nervous system
(SNS) and the parasympathetic nervous system (PSNS). Research
shows that physiological signals are good indicators of cognitive
fatigue levels over time [10] and [4]. Detecting cognitive fatigue
using physiological signals offers several advantages, including
non-obtrusive device options, user-friendly systems, objectivity,
accuracy, and reliability [3].

Currently, various physiological signals are tested to recognize
cognitive fatigue levels. These signals include electrocardiogra-
phy (ECG), electroencephalography (EEG), photoplethysmography
(PPG), electrooculogram (EOG), electromyogram (EMG), electro-
dermal activity (EDA), skin temperature and respiratory system
signals. EEG is one of the most commonly employed modalities
for cognitive fatigue because it directly measures the signal from
neurons. In one study, researchers collected EEG data obtained from
the Muse band during N-back tasks. They obtained 88% accuracy
with EEGNet architecture for binary cognitive fatigue detection
[5]. ECG signals are also used for cognitive fatigue monitoring and
robust performances are obtained. Bhardwaj et al. used ECG with a
Stacked Autoencoders algorithm to predict driver fatigue with 90%
accuracy based on HRV features [1].

Although robust performances were obtained with ECG and
EEG modalities, using them in real life can be inconvenient. It
might be plausible to use these devices in short term laboratory
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experiments but they are not comfortable and obtrusive to use in
real life environments such as offices, driving environments, daily
life for long term. Users provided chest bands, electrodes and head
bands lower comfort, long term use, social acceptance, wearablity
and social acceptance scores [16]. At this point, PPG-based devices
offer a more practical alternative. They have relatively lower data
quality when compared to abovementioned technologies but they
provide comfort, social acceptance and aesthetics for long term use.
Some studies used mobile phone PPG sensors [18] and wearable
PPG sensors[2] for monitoring cognitive fatigue during laboratory
experiments.

Another issue with most of the studies in the literature is the us-
age of tests in laboratory environments. N-back tests, arithmetical
tasks, simulations and VR-based tasks are used in laboratory envi-
ronments. However, these are short-term and artificially applied
stimuli. Studies showed that artificially induced affects are differ-
ent from the ones that occur naturally in the wild [13]. For these
reasons, recognizing cognitive fatigue in more realistic environ-
ments and tasks for longer terms will contribute more to developing
real-life monitoring systems.

In this study, we used a real-life PPG dataset consisting of one-
day data [15] from 5 participants and developed a personalized
system for recognizing cognitive fatigue levels. We cleaned the
PPG signals, extracted distinctive features, employed suitable ma-
chine learning algorithms. After that, we employed subjectwise
PPG normalization to reduce the effect of interpersonal variabil-
ity and improved the cognitive fatigue recognition performance.
We further provided feature-based analysis and the importance of
personalized evaluation in the discussion section.

2 Related Work
As mentioned, the cognitive fatigue monitoring studies using heart
activity started in laboratory environments. Lee et al. [8] introduced
a method for detecting driver fatigue using 2-minute signal seg-
ments from wearable ECG/PPG sensors, achieving a 70% accuracy
in binary classification through 10-fold cross-validation. Kundinger
et al. [7] developed a non-intrusive fatigue detection system using a
wrist-worn ECG sensor, which utilized a 5-minute sliding window
with 2-second increments to generate heart rate variability features,
achieving a top accuracy of 92.31% for binary classification, compa-
rable to a medical-grade ECG device. Bhardwaj et al. employed the
Stacked Autoencoders algorithm to predict driver fatigue based on
HRV, attaining a 90% accuracy and noting that HR and LF decreased
while HF increased during the transition from alertness to fatigue
[1]. Despite the effectiveness of these methods, their reliance on
long-term ECG signals hinders real-time performance. To address
this, Lei et al. applied a support vector machine (SVM) to short-term
ECG signals, each 5 seconds long, for fatigue recognition [9].

After demonstrating the robust performance of ECG-based men-
tal fatigue systems, researchers also tested PPG sensors for the same
task. Themain reason is the unsuitability of ECG sensors for real life
environments especially for long term use. In one study, researchers
investigate the real-time detection and prediction of mental fatigue
using heart rate (HR) and heart rate variability (HRV) as classifi-
cation features, extracted from short-term photoplethysmography

Figure 1: A block diagram of cognitive fatigue monitoring
system.

(PPG) signals via smartphones, offering a more convenient alter-
native to ECG recordings. The researchers processed PPG data by
removing baseline wander and smoothing waveforms using polyno-
mial fitting and Savitzky-Golay filtering, then applied an adaptive
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peak-seeking algorithm to extract R-peaks and calculate HR. Welch
spectrum estimation was used to obtain HRV frequency domain
characteristics, including high-frequency (HF) and low-frequency
(LF) components and the LF/HF ratio. The analysis revealed that
HR and HRV features change throughout the day with mental ac-
tivity, with HR increasing in the afternoon and decreasing in the
evening as mental fatigue sets in. The classification of mental fa-
tigue achieved an accuracy of 92.26% and a specificity of 96.12%,
indicating that HR and HRV can effectively detect mental fatigue
levels in practice, potentially aiding in the prevention of health
issues associated with fatigue.

In another study, Alam developed a cognitive fatigue assess-
ment tool, emphasizing the need for contextual evaluation rather
than generalized approaches. The authors propose a novel Activity-
Aware Recurrent Neural Network (AcRoNN) framework that lever-
ages physiological data from wearable sensors to assess cognitive
fatigue. The framework is designed to recognize activities and align
them with physiological responses, accounting for artifacts intro-
duced by physical activity. The study evaluates AcRoNN on three
datasets, demonstrating significant improvements in cognitive fa-
tigue assessment over baseline models, with a maximum of 19%
improvement reported.

Although, there are some recent studies using PPG sensors for
real life cognitive fatigue monitoring, the performance of these
systems need improvement. In this study, we used the Gamer’s
Fatigue dataset [15] collected in real-life environments for 24 hours.
First, we tested machine learning algorithms for classifying binary
cognitive fatigue. We then applied personalized PPG normalization
to decrease intersubject differences and showed improvement in
terms of performance. We also tested some regression algorithms
for levels from 1 to 7. Our results showed the need for alleviating
interpersonal variability to obtain more robust performances.

3 Methodology
The analysis process involved the following steps: cleaning the raw
PPG signals, dividing them into frames, extracting features that
capture the characteristics of the PPG data, labeling the frames
based on the self-assessment of sleepiness, and finally, predicting
fatigue using machine learning algorithms.

3.1 Preprocessing
The PPG signals were cleaned using the Toolbox for Neurophys-
iological Signal Processing Neurokit2 [11]. A Butterworth filter
was applied with a low-cut frequency of 0.5 Hz [14], a high-cut
frequency of 8 Hz [12], and order 3. Figure 2 illustrates the results
of cleaning the PPG signal. It can be observed that the noise has
been reduced and the baseline corrected.

3.2 Feature extraction
The extraction of features was conducted via a segment-wise anal-
ysis, utilising the Heartpy Toolbox [17]. The signal was divided
into 300-second segments, with 50% overlap between segments.
From each segment, time-domain features were extracted, as well
as frequency-domain features. The time domain measures include:
beats per minute (bpm), inter-beat interval (IBI), standard deviation

Figure 2: A) PPG signal before cleaning, B) same signal after
cleaning.

of NN intervals (SDNN), standard deviation of successive differ-
ences (SDSD), root mean square of successive differences (RMSSD),
proportion of NN20 (PNN20), proportion of NN50 (PNN50), breath-
ing rate (breathingrate), and some others. The frequency domain
features include: very low frequency (VLF), low frequency (LF),
high frequency (HF), the ratio of low frequency to high frequency
(LF/HF), total power (P_total), percentage of very low frequency
(VLF_perc), percentage of low frequency (LF_perc), and percentage
of high frequency (HF_perc).

Figure 3: PPG features distribution over the two states, fa-
tigued and non-fatigued

3.3 Feature Level Analysis and Personalized
PPG Normalization

Figure 3 shows the distribution of four different features in both
fatigue and non-fatigue states. The green box plot represents the
fatigue state and includes the frames in which the subject reported
themaximum fatigue score. Themaximum score varies from subject
to subject, there are participants whose maximum fatigue score
was 4/7 and others who also used the score 7/7. The yellow ones
represents the non-fatiguing state, where participants reported the
lowest fatigue score.
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When we analyzed the features, the results aligned with the
literature [1]. HF component is higher during fatigue state (see
Figure 3). These features showed that variance of RR distribution
and heart rate variability is higher during fatiguewhich corresponds
to more relaxed conditions as expected.

Once the features had been extracted, the PPG feature values
were scaled using the following standardization formula for each
subject, where 𝜇 is the mean and 𝜎 is the standard deviation of the
given distribution.

𝑧 =
𝑥 − 𝜇

𝜎

In order to train machine learning algorithms, we used the Stanford
Sleepiness Scale (SSS) as labels. This was completed by participants
after each hour. For regression, we used the scale with its seven
values. For classification, we used two classes, with a threshold set
at the value of 4 (somewhat foggy, let down) on the SSS scale. This
was based on our belief that this is a point where action should be
taken to avoid mistakes caused by sleepiness.

3.4 Machine learning models
In order to predict sleepiness, we trained a number of machine
learning models with different configurations. For classification, we
used a k-Nearest Neighbours (kNN) model with different numbers
of neighbours, a Naive Bayes model, an Support vector machine
(SVM) model with different kernel functions and C values, a Ran-
dom Forest (RF) classifier with different depths, and also an MLP
model. For regression, we used kNN, Linear Regression (LR), a Ran-
dom Forest Regressor,and SVM. Table 1 shows the details of the
hyperparameters used in the machine learning algorithms.

Table 1: Hyperparameters for Selected Machine Learning
Algorithms

Model Hyperparameter Values
kNN N Neighbors 3, 5, 7, 9, 11, 13, 15
SVM Kernel linear, poly, rbf, sigmoid

C 1, 6, 11, 16, 21, 26,31, 36
RF N Estimators 10, 30, 50, 70, 90

Max Depth 1, 4, 7, 10, 13, 16, 19, 22, 25, 28

4 Experimental Results
After the pre-processing and feature extraction phase, we removed
the rows with missing values and proceeded with training the ML
algorithms.

4.1 Classification
The final data set comprised 82.21% instances of fatigue and 17.79%
instances of non-fatigue. To ensure the models were not biased to-
wards the majority class, we balanced the data set through random
undersampling of the majority class. We trained several machine
learning models using the balanced data set and validated them
using a five-fold cross-validation process. The best results were
achieved with a k-nearest neighbour model, which achieved 61.2%

Table 2: Best performing Random Forest Classifier detailed
scores

Accuracy F1 Score Precision Recall
80.5 80.5 80.7 80.5

accuracy, and a random forest classifier, which achieved 73.8% ac-
curacy. Figure 5 presents the results obtained with balanced but
non-standardised data.

We standardised the data as described in the previous section and
trained and validated the models using the same approach with a
stratified 5-fold cross-validation. The results of the best-performing
machine learning algorithms without balancing the standardised
data are shown in Figure 4.
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Figure 4: Accuracy and F1 of the best-performing models on
unbalanced dataset

After getting results for the original imbalanced dataset, we
balanced the dataset by random undersampling and showed the
results in Figure 5. As it can be seen, the performance metrics
decreased drastically due to losing the advantage of leaning towards
majority class.

The results of the best-performing models after balancing and
personalized normalization are shown in Figure 6. The kNN achieved
72.6% accuracy with 9 neighbours, the Random Forest Classifier
had 80.5% accuracy using 50 trees and a maximum depth of 13, and
the SVM used a radial basis function kernel.

The Random Forest Classifier demonstrated the best overall
performance in the classification task, which utilized binary classes.
Table 2 shows the F1 score, precision, recall for this model, offering
additional insights into its performance. Table 3 shows the F1 scores
for the Random Forest classifier using different numbers of trees
and different depths.



Robust Wearable-based Real Life Cognitive Fatigue Monitoring by Personalized PPG Normalization IWOAR ’24, June 03–05, 2024, Woodstock, NY

kNN Random Forest SVM MLP
0

20

40

60

80

100

61.2

73.8

51.6
58.861.1

73.6

35.7

54.2

Sc
or
e
(%
)

Accuracy F1

Figure 5: Accuracy and F1 score on non-standardized bal-
anced data set
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Figure 6: Accuracy and F1 of the best-performing models

4.2 Regression
In order to perform the regression analysis, we utilised the standard-
ised features as input. The target values ranged from one to seven,
in accordance with the Stanford Sleepiness Scale. The performance
of the models was evaluated using mean squared error (MSE), mean
absolute error (MAE), and R2 score, which are presented in Table 4.
Similarly to the classification task, in the regression task, the best
model was the Random Forest Regressor, this time with 90 trees
and a maximum depth of 10.

Table 3: Random Forest F1 scores in percent with different
parameter configurations

Number of Trees
Max Depth 10 30 50 70 90

1 60.9% 61.3% 63.2% 64.5% 63.4%
4 72.6% 75.7% 76.8% 75.4% 76.5%
7 76.1% 77.7% 77.3% 80.2% 77.2%
10 77.4% 78.4% 78% 79.6% 78.3%
13 77.2% 77.3% 80.5% 78.6% 78.7%
16 76.6% 76.9% 77.4% 77.4% 77.6%
19 75.5% 79.7% 77.1% 78.2% 77.9%
22 76.5% 78.7% 76.7% 77.9% 77.7%
25 75.7% 77.3% 79.1% 78.4% 79.5%
28 77.2% 77.1% 78.3% 78.9% 78.7%

Table 4: Regression models scores

Model MSE MAE R2 score
kNN 1.23 0.84 0.29

Linear Regression 1.49 0.97 0.14
SVM 1.16 0.81 0.33
RF 0.85 0.70 0.51

5 Discussion and Conclusion
Wefirst made a feature level analysis which shows that Parasympha-
thetic Nervous System activity corresponds to relaxness is increased
during fatigue. Our feature analysis confirm this phenomenon with
the increase of HF, standard deviation and heart rate variability.

Since our real life dataset is limited in size (24 hours data from
5 participants), we chose traditional machine learning algorithms
instead of more complex ones such as CNN, LSTM, Transformers.
From the results, it can be seen that Random Forest achieves the
best results. We showed both F1 scores and accuracy for both cases.
For the imbalanced and general (not personalized) case, accuracy
scores are much higher than F1 scores because of ML algorithms’
tendency to classify the label as majority class. Therefore, we need
to compare the performances before and after personalization from
F1 scores. We obtained around 2.6% increase in the binary clas-
sification performance for the best result. A different amount of
performance increases are demonstrated except for kNN algorithm.
We further provided regression results by using the perceived cog-
nitive fatigue scale from 1 to 7. Random Forest Regressor achieves
the best results.

We chose a PPG dataset collected with unobtrusive wearables
during real world tasks continuously for one day. The reason for
that is to obtain more realistic results that can be applied to real
world applications. Laboratory induced short term cognitve fatigue
will be different than cognitive fatigue caused by a real life task.
Furthermore, PPG sensors can be used without disrupting users
for longer times. We also improved the performance by applying
personalized normalization to decrease the effect of interpersonal
variability.

We believe that our system can be applied for especially decreas-
ing cognitive fatigue related work and car accidents by unobtrusive
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continuous monitoring and giving a chance to intervene before
fatigue reaches high levels.
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