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ABSTRACT
The increasing popularity of conducting studies in real-life set-
tings, known as "studies in-the-wild," is a valuable addition to the
traditional controlled clinical trials. These studies enable the obser-
vation of long-term effects and account for the complex influences
of everyday life. Body-worn sensors facilitate the continuous and
unobtrusive collection of motion data in its user’s natural, everyday
life environment. However, studies in-the-wild require careful plan-
ning regarding equipment usability, accessibility, and the creation
of efficient study protocols to maximize the quality and output of
the collected data. This paper presents insights from our recent
study on compulsive handwashing, highlighting the challenges and
strategies in study design, implementation, and label acquisition
in order to perform supervised machine learning. We present ap-
proaches as well as the benefits and limitations of annotating data
retrospectively so that participants are impacted minimally during
the study. Finally, we list our learning and insights for upcoming
studies of that kind.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile de-
vices; Human computer interaction (HCI); • Applied computing
→ Health care information systems; Psychology; • Information
systems → Users and interactive retrieval; • Computing method-
ologies → Machine learning approaches.
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1 INTRODUCTION
Conducting studies outside the controlled setting, also referred to as
"in-the-wild", has gained enormous popularity in recent years. The
concept of observational studies in natural environments without
intervention began to emerge along with the questions of what stud-
ies outside the laboratory should look like [1]. This specific kind of
study offers many benefits. On the one hand, findings from clinical
trials can be reassessed in everyday life and observed over a longer
period to study long-term effects. On the other hand, for many re-
search questions, the influences of ordinary life play a major role in
the results. These influencing factors can only be observed in a real
and realistic environment where the participant is not controlled
or monitored. Studies that additionally use sensors can also be car-
ried out outside the lab through the rapid development of portable
sensors, known as wearables to collect physiological signals and
motion data. Wearables, such as smartwatches, make collecting
data constantly but unobtrusively in everyday life possible.

Although studies in-the-wild have great advantages, they also
require special precautions in their design and implementation.
These are characterized by the choice of equipment concerning
usability and accessibility for the participant and a study protocol
that is simple to implement but provides the desired output.

Wearables can be used to record physiological parameters as
well as motion data continuously. The latter can be used to recog-
nize movement patterns and assign activities. The research field of
human activity recognition in-the-wild is popular but poses many
challenges. Distinguishing activities in everyday life without fur-
ther (e.g. contextual) information is highly complex. Thus, when it
comes to developing a (machine learning) model that recognizes
certain activities, researchers still rely on supervised machine learn-
ing methods. For those approaches, the beginning and end of an
activity needs to be known. These so-called labels can be received
from the study participants during data collection. Nevertheless, it
is a significant effort for the participant to provide information not
only about the time of an activity but also about the duration, i.e.
start and end. However, since we want to influence the subject’s
everyday behavior as little as possible, we often accept collecting
only the information about the time of the activities. This means
that for the supervised machine learning model, it is necessary to
find a way to determine the start and end time of the activity after
the data has been recorded.

In this paper, we show what we have learned from our recent
study on (compulsive) handwashing in terms of study design, im-
plementation, and label acquisition. We explore various strategies
for addressing noisy labels, coming from real-life situations, in
supervised machine learning. We delve into the insights and im-
pacts of manual inspections and annotations and discuss the Inter-
Annotator Agreement (IAA). Lastly, we share our lessons learned
and insights to guide future research in this area.
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2 BACKGROUND
Since the present work is essentially concerned with the aspects of
studies outside the laboratory and the associated challenge of data
annotation, we will explain the fundamental aspects below.

2.1 Studies in-the-Wild
Over a decade ago, researchers identified the need for "in-the-wild"
studies with wearable devices, arguing that research in participants’
natural environments is crucial for understanding the real-life im-
pact of technology and minimizing behavior changes from obser-
vation awareness [1, 2].

Schlögl et al. emphasized the importance of involving more users
in these studies to validate data from wearable technologies. Their
research highlighted that real-life interactions with wearables are
affected by technical knowledge and device discomfort, recommend-
ing a user-centered approach [3].

Overall, scientific literature indicates that including participants
as early as possible in the study design is essential for understanding
their needs, ensuring compliance, and achieving high-quality data
in unsupervised, real-life studies.

2.2 Time-Series Data Annotation and IAA
Even though research in the area of machine learning is increas-
ingly moving in the direction of deep learning, there are still use
cases that are better suited to classic machine learning due to their
novelty and limited amount of data. When talking about classic
machine learning, a distinction is made between supervised, semi-
supervised, and unsupervised learning. While the former requires a
considerable amount of annotated data, the advantages in terms of
accuracy, interpretability, performance evaluation, and reliability
make it the preferred choice for many applications, especially those
where precision and reliability are of major importance [4, 5].

Despite the benefits, obtaining high-quality annotated data in a
real-world study with wearables can be challenging when it comes
to capturing participants’ natural behavior without additional bur-
den. To keep the effort and influence to a minimum, it is common
practice to have third parties enrich the data with additional infor-
mation (annotations, labels) afterwards. In the following, the terms
annotation and labeling are used synonymously.

Annotating data retrospectively by external persons, e.g. by
visual inspection, involves a certain risk, especially concerning
the introduction of a personal bias. Several annotators are often
used for the same data to keep this to a minimum. Approaches
such as the calculation of IAA are used to evaluate the success and
degree of agreement of the manually annotated data. Prominent
metrics for calculating the IAA are, i.e., the Percent Agreement,
Krippendorff’s Alpha, and Cohen’s Kappa (𝜅) [6]. The latter will be
used in this paper and is defined as follows:

𝜅 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒

where 𝑃𝑜 is the observed agreement and 𝑃𝑒 is the expected agree-
ment by chance.

3 RELATEDWORK
In their systematic literature review, the authors of [7] explicitly
highlight that one of the primary obstacles in real-world activity
recognition is the necessity for labeled data. However, the review
did not identify a simple, high-quality label creation solution. As
a possible solution, the paper by Garcia-Ceja and Brena is refer-
enced, where the authors recommend labeling only a small part
of the dataset with available annotated data and using it to train
personalized models, as these outperformed general models [8].

The paper by Larradet et al. explores various aspects, including
the challenges associated with self-reporting for emotion recogni-
tion in daily life. They draw attention to the subjective nature of
labeling, which is influenced by individual perceptions. Moreover,
they point out the likelihood of delays or inaccuracies in annota-
tions due to the dynamic and unpredictable nature of everyday
activities. To address these challenges, they propose implement-
ing standardized annotation protocols to improve consistency and
objectivity [9].

In a recent study presented in [10], conducted in real-world
settings, the authors highlight significant challenges arising from
delays encountered at various stages of the project. These delays
range from acquiring ethics approval to facing technical difficulties
upon the initiation of the main study. They suggest conducting
pilot studies with distinct goals, e.g., to validate assumptions made
in the study design or to test the devices in action. This again shows
the need to involve future study participants in the planning phase,
which is known as a user-centered approach.

4 PREVIOUS WORKS
In a series of previous studies [11–13] in preparation for the study
presented in this paper, lab-recorded inertial measurement unit
(IMU) data from the wrist, collected under controlled conditions,
was used to simulate specific handwashing behaviors as it occurs
in people suffering from obsessive-compulsive disorder (OCD). The
researchers used detailed scripts of compulsive handwashing, based
on descriptions from individuals with OCD, to enact specific se-
quences of handwashing gestures. The goal was to demonstrate
that simulated compulsive handwashing could be distinguished
from routine handwashing in healthy participants. This approach
could later be utilized to support and enhance conventional thera-
pies, such as psychotherapy or specifically exposure and response
prevention (ERP) therapy, by automatically detecting and logging
compulsive actions, and providing feedback to the patient to help
them discontinue these behaviors.

In a subsequent study, the dataset was expanded to include other
repetitive activities similar to handwashing [14]. This enhancement
aimed to improve the robustness of the trained models against con-
founding activities, such as "rinsing a cup" or "peeling a carrot"
which involved repetitive wrist motions resembling handwashing.
The researchers successfully showed that simulated compulsive
handwashing could be distinguished from these confounding activ-
ities, including routine handwashing.

These pilot studies in the laboratory served both technically
and in terms of study design as the basis for the study-in-the-wild
presented in the following.
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5 DATASET GENERATION
The collected data is part of a study called OCDetect about com-
pulsive handwashing conducted in Switzerland. The study was
approved by the Ethics Committee of North/West Switzerland (ap-
plication number 2021-01317). We recruited 30 participants with
excessive urge to wash their hands. All participants were exam-
ined by trained psychologists and had to complete interviews to
guarantee their suitability for the study. To be part of the study,
participants had to be aged between 18 and 75, non-suicidal, and
meet the criteria for compulsive handwashing. In the end, 22 par-
ticipants completed the study, and eight dropped out for personal
or technical reasons.

The participants were asked to wear a smartwatch for at least six
hours a day over a 28-day recording period and follow their normal
daily routines. The Android-based smartwatches were adapted with
a pre-trained machine learning model to recognize handwashing in
daily life automatically. Therefore, we recorded the data from the
three-axis accelerometer and gyroscope at a frequency of 50 Hz.
Themodel was trained on simulated lab data so that its performance
in real life was less than expected. Whenever the watch detected a
possible handwashing activity, the user got a notification that could
be affirmed or declined. Additionally, the participants could mark
handwashing manually by tapping on the watch and also indicate
the type of washing, i.e. compulsive or routine handwashing. By
this, we received information, later called labels, about the point
when a handwashing activity occurred.

We ended up with a cleaned dataset of 2600 hours of daily-life
activities and a total of 2930 handwashing sessions, of which 1526
were categorized as compulsive by users, while 1404 were identified
as routine handwashing sessions.

6 RE-LABELING APPROACHES
For the OCDetect study, we decided to collect only one label in
the form of a timestamp for each handwashing event. We aimed
to prevent patients with compulsive washing behavior from addi-
tional stress and we did not want to change their natural movement
patterns unnecessarily. Thereby, we could collect data in a realistic
scenario. Consequently, this also means that we have no informa-
tion afterward about the start and possibly the end of the activity.
However, this information is necessary for supervised machine
learning approaches. For this reason, we enriched the data with
this information retrospectively after completing the data acqui-
sition. Since this step is not trivial without the information about
the length of the activity as well as the start and exact end, we
considered two different approaches. In the following, these two
approaches are referred to as automatic re-labeling and manual
re-labeling.

6.1 Automatic Re-Labeling
First, we wanted to get a sense of how long participants spend
washing their hands on average. Although we found evidence in the
literature on the average duration of hand washing in the German
population (more than half of the participants wash their hands for
between 10𝑠 and 19𝑠 on average [15]), we could not assume that
this behavior is the same in patients with compulsive handwashing.
Therefore, we used the video footage we created during the first

visit to the lab, where participants were asked to wash their hands
while being filmed. Using the video material, we were able to derive
a personal handwashing duration for each participant for whom
we had a recording. Unfortunately, this was not the case for every
participant, so for those where we had no lab video, we used the
average duration of handwashing that we had calculated from all
available videos. On average, handwashing in the lab took 38𝑠 , with
18𝑠 being the shortest and 60𝑠 the longest. This observation does
not align with the typical handwashing duration seen in the general
population, but it supports the naive assumption that individuals
with a handwashing compulsion tend to wash their hands for a
longer period. Finally, we labeled the activity up to 5𝑠 before the
actual user label, as we assumed that the hand washing was already
over by the time the user pressed the button on the watch to indicate
a washing activity had happened.

6.2 Manual Re-Labeling
As an additional approach, we opted for an elaborate manual ap-
proach to evaluate the extent to which the human factor can im-
prove the labels and thus the result. Since manual annotation is
very time-consuming, we decided to annotate only a subset of six
participants manually, but with higher quality and less potential
bias, rather than relying on quantity. This subgroup already has a
sufficient number of participants and annotations to get a feel for
the impact on the classification results (which will be published
elsewhere).

To minimize personal bias, we opted to use two different an-
notators for each participant to manually label the handwashing
events. With six participants and four annotators, we established
unique participant-annotators pairs, we formed the following set
of possible labeling assignments:

A = {(𝑃𝑖 , (𝐴 𝑗 , 𝐴𝑘 )) |𝑖 = 1, 2, ...6, 𝑗, 𝑘 ∈ {1, 2, 3, 4}, 𝑗 ≠ 𝑘} (1)
We then selected assignments from A so that the following con-
straints were met:

∀𝑃𝑖 ∈ 𝑃 : 𝑃𝑖 appears in A exactly twice (2)
∀Pairs (𝐴 𝑗 , 𝐴𝑘 ), 𝑗 < 𝑘 : (𝐴 𝑗 , 𝐴𝑘 ) appears in A exactly once (3)

As an annotation tool, we decided on an open-source, easy-to-use,
and collaborative online platform called Label Studio [16]. Since not
every handwashing activity is clearly visible, the annotator could
choose between four different label types: Begin AND End uncertain
(if both the activity start and end are difficult to identify), Begin
uncertain (if only the end can be clearly determined), End uncertain
(if only the beginning is identifiable), or Certain (if the activity is
fully recognizable. Additionally, the annotator may opted not to
set a manual label at all, such as when there is no movement. This
differentiation between label types allows for subsequent analyses
of the relabeling process.

In Figure 1, we illustrate visualizations of accelerometer data
capturing two distinct handwashing activities performed by Sub-
ject E. While in Figure 1a, the rapid handwashing movement is
clearly identifiable, in Figure 1b, this characteristic is not noticeable.
Furthermore, in Figure 1a, the original user label (depicted by a
dotted black vertical line) coincides with ongoing motion, making
it challenging to determine whether the activity had already con-
cluded before the movement, merely indicating button pressing, or
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(a) Example of a handwashing activity where rapid movements are
clearly visible. The start of the activity is visually identifiable (around
second 8), but the endpoint labeled by the user appears to occur in
the midst of a movement.

(b) Example of a handwashing activity where the beginning and end
are not easily identifiable due to a less distinctive pattern.

Figure 1: Visualizations of accelerometer data (in three axes:
Acc x, Acc y, and Acc z) depicting two handwashing activities
for Subject E. The subject’s original labels are represented by
dotted vertical lines.

if the movement still constitutes part of the handwashing activity.
However, segments with clearly no movements make it easier to
isolate specific patterns, such as handwashing. In contrast, Figure 1b
presents a significant challenge because neither the beginning nor
the end of the activity can be distinctly identified visually. This
highlights some of the difficulties encountered during manual data
annotation.

7 RE-LABELING RESULTS
To get a first impression of the quality of the manual re-labeling ap-
proach, we first create some overall statistics and visualize different
aspects of the output.

In Table 1, the number of existing labels for the six different
subjects (A-F) as well as the manually set labels (independent from
their kind) for the respective annotator are listed. The differences
in the number of newly set labels are due to the fact that an anno-
tator could also decide not to set a label at all if he or she believed
that there was most likely no activity there. Overall it can be seen
that already the amount of user labels differs between the subjects
which can be a sign of the severity of the disorder or a general

lack of compliance. Subject A clearly shows that a high number
of user labels does not mean that handwashing is more routinized
and therefore more visually recognizable. Both annotators did not
set new labels for almost half of the original user labels. In general,
it can be said that the annotators (except for Subject F) were in rea-
sonable agreement as to where handwashing had actually occurred
and therefore needed to be labeled.

Figure 2 and Figure 3 give insights into the shares of the different
kinds of labels. Figure 2 illustrates the frequency and distribution
of label types utilized by the four annotators across all subjects to
which they were assigned. This figure provides insights into various
annotator behaviors, revealing significant variations in label types
despite two annotators consistently relabeling the same subject.
Such discrepancies may stem from a lack of common understanding
regarding the identification of handwashing activity patterns or
uncertainty regarding which actions constitute handwashing (e.g.,
drying hands or opening the faucet).

Figure 2: The figure showcases the spread of different label
types assigned by each annotator across all newly set labels.

Figure 3 shows the same label types but in relation to the dif-
ferent participants. This plot aids in identifying subjects where
handwashing was visually easier to discern (labeled as Certain),
as well as instances where the pattern was less clear (labeled as
Begin AND End uncertain). It also highlights the participants for
which incorrect previous user labels may have occurred, potentially
indicating no movement and thus no newly set label.

The mean handwashing durations for compulsive as well as rou-
tine handwashing in seconds for each subject after re-labeling the
data are illustrated in Figure 4. Therefore, the two annotations for
each activity have been combined. It becomes apparent that the
duration of handwashing is extremely different not only across
participants but also within a participant (recognizable by the high
standard deviation). This may be due to natural human behavior,
but may also be influenced by the annotators and the ambiguous
visual pattern. Since no clear statement can be made about different
durations between the two different types of hand washing (compul-
sive and routine), no conclusions can be drawn here either. Without
differentiation between compulsive and routine handwashing, the
overall mean duration is 52.30 s with a standard deviation of 39.00 s.
With differentiation, the mean durations are 56.09 s for compulsive
and 53.84 s for routine behaviors, with standard deviations of 53.89
s and 30.96 s, respectively.
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Subject A Subject B Subject C Subject D Subject E Subject FAnnot.
bef. after % bef. after % bef. after % bef. after % bef. after % bef. after %

1 362 235 64.9 225 208 92.4 398 308 77.4
2 225 212 94.2 130 115 88.5 195 169 86.7
3 130 127 97.7 398 347 87.2 366 343 93.7
4 362 195 53.9 366 323 88.2 195 124 63.6

Table 1: This table shows the amount of originally set user labels (before, abbr. as bef.) and those set by the individual annotator
(abbr. as Annot.) for their assigned subject (A - F) afterward (after). Each absolute number of before and after labels, as well as
the corresponding percentage share, is also provided.

Figure 3: The visualization depicts the distribution of various
label types assigned to different participants.

Figure 4: The horizontal bar chart displays the mean hand-
washing durations in seconds categorized as compulsive and
routine handwashing (abbrev. HW) activities, merged from
annotations by each subject. Additionally, each bar also indi-
cates the respective standard deviation.

When considering activities where annotators were certain dur-
ing re-labeling, the frequency of hand washes decreases. Figure 5
visualizes compulsive and routine hand washes where both anno-
tators confirmed certainty about the activity pattern. This results
in an overall mean duration of 32.02 s with a standard deviation
of 13.85 s when not differentiating between handwashing types.
When distinguishing between compulsive and routine handwash-
ing, the latter has a mean duration of 36.11 s ± 17.41 s (with 𝑛 = 25
instances). For 𝑛 = 102 compulsive handwashing activities, the

mean duration is 30.48 s ± 5.92 s. The unexpectedly shorter dura-
tion for compulsive handwashing should be interpreted cautiously,
as it exhibits a significantly smaller standard deviation compared to
routine handwashing activities, despite occurring four times more
frequently.

Figure 5: The horizontal bar chart shows again the mean
handwashing durations in seconds categorized as compulsive
and routine handwashing activities, merged from annota-
tions by each subject but only when both annotators labeled
the activity as being Certain. The number of resulting activi-
ties is displayed as 𝑛 if there was at least one.

8 IAA EVALUATION
As introduced in Section 2.2, we used Cohen’s Kappa to evaluate the
level of agreement between different annotator pairs. The results,
visualized in Figure 6 as a heatmap, reveal considerable variation in
agreement levels among the pairs. While annotator pairs (1, 4) and
(3, 4) show a higher level of consensus, the other pairs demonstrate
lower agreement. It is important to note that these discrepancies
are likely to be explained by the different ways of washing hands
even within the same participant. Furthermore, it cannot be said
with complete certainty that all activities marked by the user were
actually handwashing, as even an accidental press of the smart-
watch button, for example, would be incorrectly counted as such
without the possibility of validating this afterwards.

Cohen’s Kappa, commonly used for measuring IAA, has several
drawbacks. It is sensitive to an unbalanced distribution of cate-
gories, which is particularly relevant in our context. Moreover, it
may not accurately reflect agreement when annotators have differ-
ent tendencies. The simplified treatment of random matches and
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Figure 6: The heatmap visualizes the IAA by using Cohen’s
Kappa for each annotator pair.

the sensitivity to annotations near category boundaries further
complicate the interpretation. Since in our use case different types
of hand washing often follow each other, these factors could lead
to lower scores. These limitations underscore the importance of
interpreting Kappa scores cautiously.

9 LESSONS LEARNED
As a result of our OCDetect study, we can draw several lessons that
are not only valuable for our future work but can also serve the
community as a basis for studies in-the-wild.
Plan for Participant Involvement. Following user-centric ap-
proach while designing the study is essential. This can involve
multiple approaches, ranging from using questionnaires to gather
input from the target group about assumptions leading to the study
design to incorporating concrete pilot studies as integral parts of
the overall research. This might help to understand challenges and
increase study results through greater participant commitment and
compliance. In our specific case, it would have been helpful to give
the participants some (technical) background knowledge on data
recording with wearables and maybe even the basic machine learn-
ing concept. The lack of understanding of the connection between
the time-series data recorded by the smartwatch and the annotation
of a handwashing activity by the user led to poorer data quality.
Later data exploration showed that some users apparently did not
wear the watch, but nevertheless pressed the button to annotate,
e.g. after washing their hands. This behavior is valuable from the
user’s point of view, as the information for washing hands was
provided. From the point of view of automated machine learning,
however, this leads to misinformation for the model, as there is
no movement data but still a label. In future studies, we will ask
users not to set a label if the smartwatch is not being worn. Even
if the watch is worn, we will give an approximate time period of
10 minutes in which an annotation can be made afterwards and, in
case of forgetting, simply not to set a label, since a label set much
too late can hardly be assigned to the original activity.
Data Recording App Improvements. We have also noticed sev-
eral times that labels occur in very short succession, where it is
unlikely that several activities have taken place. We assume that the
user has entered an incorrect label, for example, or that a label has

been added several times due to a lack of feedback that a label has
already been set. The user interface can be improved technically
by introducing the option to take back a label and an overview of
annotations that have already been made.
Interdisciplinary Team. In addition, as already demonstrated
in our study, it is important to involve not only the user but also
experts, such as trained psychologists in our case, in the study
process. In this way, trust is created, responsibility is shared and
the results can be correctly classified, categorized, and interpreted.
Annotation Guidelines. When it comes to manually annotating
the data afterwards, it became apparent that defining annotation
guidelines is essential. By doing so, a common understanding of
the data and desired outcome is created, the data quality improves
considerably, and personal bias is reduced to a minimum.
Multimodal Data Collection. Manual data annotation is time-
consuming and requires additional knowledge, such as contextual
information. Collecting further data modalities during the study can
be beneficial [17]. For activities like handwashing, context, such
as location within the room, is crucial. The direct link between
specific activities and their spatial allocation (e.g., washing hands
at the sink) can help determine the start and end of these activities.
Personalized Pre-Model. As previously described in Section 5,
the smartwatches used for data recording were equipped with a
deep learning model pre-trained on lab data. This model aims to au-
tomatically recognize as many handwashing activities as possible,
requiring confirmation from the user only. However, the study re-
vealed significant variability in individual handwashing techniques,
even within the same participant. This variability can lead to nu-
merous incorrect detections, causing label fatigue [18]. To minimize
this issue, the pre-trained model can be personalized for each user
during the initial days of data recording through a combination of
online and active learning with individual data [19]. This personal-
ization reduces false-positives and enhances user compliance.

10 CONCLUSION
In conclusion, we have presented key findings and challenges in
the study design, execution, and data annotation of our in-the-
wild study OCDetect. Our findings highlight the importance of a
user-centered approach to study design, engaging participants and
experts to ensure robust data collection and participant compliance.

Wearable technology proved essential for continuous and un-
obtrusive data collection in naturalistic settings. However, it also
posed a challenge to the accuracy and reliability of the data gen-
erated by participants. In our study, both automated and manual
relabeling of handwashing activities were performed, showing con-
siderable variability in labeling quality. This highlighted the need
for standardized labeling protocols to reduce personal bias and
improve data consistency. Although the process of manual relabel-
ing was resource intensive, it provided valuable insights into the
reliability of human annotations and IAA. Using Cohen’s Kappa
metric, we assessed the agreement between annotators.

In a detailed lessons learned section, we highlight the challenges
faced during the study and provide potential solutions for future
studies of this type, ranging from plans for participant involvement,
over additional ideas for data collection and label acquisitions to
advanced machine learning approaches.
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