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Abstract. Incorporating machine and deep learning methodologies into
wearable devices has enhanced the capacity to accurately recognize hu-
man activity, thus enabling a range of applications including healthcare
monitoring and fitness tracking. However, machine and deep learning
can be costly in terms of the computational resources and energy con-
sumption required. In this work, we study how a feature selection deci-
sion impacts the energy consumption of an ESP32 wearable device by
evaluating the best trade-off between classification performance and en-
ergy expenditure. Experimental results, conducted on publicly available
datasets, demonstrate that the best trade-off between energy consump-
tion and accuracy is reached by selecting between 20 and 25 features,
with an accuracy ranging between 73.56% and 87.44%, and an energy
consumption between 2340.945 µJ and 3759.270 µJ.

Keywords: Human Activity Recognition · Feature Selection · Energy
Efficiency · Wearables · Constrained Devices.

1 Introduction

The field of sensor-based Human Activity Recognition (HAR) has emerged as a
pivotal area of research within the domain of wearable computing and ubiquitous
sensing. Its applications span a wide range of domains, including health moni-
toring and the development of smart environments [24, 13]. Wrist-worn devices,
such as smartwatches and fitness trackers, have become particularly popular due
to their unobtrusive nature and their ability to collect data continuously. These
devices frequently employ a multitude of sensors, including accelerometers, gy-
roscopes, and magnetometers, to capture a comprehensive array of signals that
can be processed to infer user activities. Sensor-based activity recognition has
yielded excellent results, mainly due to the application of machine learning (ML)
techniques, both in shallow and deep approaches [33].

Nowadays, deep neural networks (DNNs) have become state-of-the-art in
many machine learning applications, ranging from computer vision to speech
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recognition, by processing raw sensor data directly. However, the impressive
performance of DNNs comes at the cost of significant computational resources
required for both training and inference. A common approach to address these
computational demands is to delegate the model inference to a cloud-based
framework. On the other hand, maintaining inference tasks to wearable devices
offers several compelling advantages: (i) it eliminates latency issues associated
with cloud communication, thereby enhancing responsiveness; (ii) it enhances
privacy and security by keeping data local to the device; and (iii) it can improve
energy efficiency by balancing the energy demands of computation and com-
munication [1, 4]. However, the deployment of such devices is often constrained
by their limited battery life, necessitating the development of energy-efficient
solutions to prolong operational duration without compromising accuracy. In
this context, several studies have demonstrated that concerning tiny devices,
shallow tools are more energetically advantageous than deep approaches while
maintaining comparable classification capabilities [17, 3, 16, 23].

In shallow ML, representative features must be extracted from raw sensor
data in a process known as feature selection to identify activities. The extrac-
tion can be performed in the time domain, frequency domain, or both to leverage
the unique characteristics of each domain. The shallow approach envisages do-
main experts with specialized knowledge analyzing and selecting hand-crafted
features, typically using heuristic algorithms [9]. Hand-crafted features often
pertain to statistical information, regardless of the domain. Feature selection
consists of discarding features that do not provide helpful information, i.e., irrel-
evant. Other discarded features are those that do not provide more information
compared to currently selected ones, i.e., redundant. According to the literature
[21, 26], feature selection strategies can be classified into three categories, which
are the most widely used: filter-based, wrapper-based, and embedded-based ap-
proaches. More recently, two other categories have been identified, i.e., hybrid
and ensemble [36].

Existing literature in the area of feature selection mainly focuses on propos-
ing new algorithms to improve the selection of the best feature subset [30, 14,
37, 2]. Despite the high interest in the topic, feature computational complexity
and resulting energy impact are often neglected. In [8], the authors propose a
many-objective feature selection algorithm based on the computational complex-
ity of features. However, the complexity of each feature is not determined, and
they chose to assign a fixed, random cost value. Moreover, they did not consider
the energy impact. Therefore, our work is motivated by the limited literature
in exploring the computational complexity of each single feature and the eval-
uation of the energy consumption on constrained devices in the HAR context,
leaving room for investigation. Momeni et al. consider features’ computational
complexity and try to estimate the energy consumption of the features on an
ARM Cortex M3 hardware platforms [27]. However, the exploration was carried
out for multimodal acute stress monitoring, which entails adopting, placing, and
analyzing sensor data different from those used for HAR.
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This paper extends our previous work [31] by thoroughly investigating the
energy consumed by each feature during the feature selection process, measuring
the actual consumption with a device rather than hypothesizing it, considering
data collected via wearable devices such as smartwatches and smartphones. In
this work, we consider activities of daily living, ranging from hand-based activ-
ities such as brushing teeth and preparing sandwiches to locomotion activities
such as walking and running. The goal is to find the best trade-off between the
energy consumption associated with feature selection and recognition accuracy.
We used the Recursive Feature Elimination and Select From Model methods
with RidgeCV regularization as feature selection algorithms.

To validate our approach, we consider three datasets to extract features
in the time and frequency domains. One is a homemade dataset, Ad-Hoc DB
[25], and the other two are the public Watch_HAR [35] and the RealWorld2016
[34]datasets. To consider only signals acquired from wrist-worn devices, we fil-
tered traces collected in the RealWorld2016 dataset with the sensor positioned
at the wrist. To assess the recognition accuracy, we used a Random Forest clas-
sifier. On the one hand, this choice is motivated by the successful results yielded
in HAR and, on the other, by the fact that these algorithms and classifiers are
lighter than other deep-learning approaches. Such an approach greatly simpli-
fies the deployment on a lower-power-constrained device because it allows us
to avoid the adoption of optimization deployment strategies [10]. Results show
that our approach effectively balances energy consumption and recognition ac-
curacy, demonstrating the potential to save energy while preserving accuracy
when machine learning models are deployed on wearable devices.

The rest of the paper is organized as follows: Section 2 reports related work
on the impact associated with the feature selection process; in Section 3 we
describe our proposed approach and discuss achieved results in Section 4. We
then summarize the contribution of this work in Section 5.

2 Related Work

Feature selection is a critical phase of the HAR process, which deserves at-
tention from the research community. This attention has increased in the last
decade because of the high amount of data fostered by the pervasiveness of mo-
bile and wearable devices that allow for constant monitoring of human activity
and biosignals [29]. Indeed, this phase highly impacts the quality of the clas-
sification accuracy since it is supposed to select the most relevant features. It
also impacts the computational burden since each feature is supposed to have its
computational complexity, thus leading to a lighter or heavier impact on devices’
resource consumption.

Karagiannaki et al. evaluated three feature selection methods: Feature Selec-
tion based on Feature Similarity, Relief-F, and Clustering with Node Centrality.
These methods were provided by a library, which was subsequently evaluated in
terms of execution time and energy consumption. The algorithms were evaluated
in the HAR context, and they found that the extraction and selection of features
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are the most time-consuming operations and that Relief-F is the fastest in terms
of maximum execution time, around 28s. In contrast, the energy requirement
of their framework is around 20.3 J. However, those results were obtained by
implementing their architecture on a Samsung Galaxy Tab4, which differs from
low-power wearable devices.

In [15], Ghasemzadeh et al. investigated the power optimization of wearable
sensor nodes by performing instruction-level energy analysis of the feature se-
lection phase. They used the TI MSP430 microcontroller to process real data
collected from three subjects using wearable motion sensors. Specifically, they
considered TI MSP430’s ‘mov’ instruction to quantify the energy cost associated
with each feature. To perform such a quantification, the authors leveraged the
results of the work by Lane and Campbell [22], who assessed the energy consump-
tion due to the execution of different types of the MSP430 processor instructions.
However, Ghasemzadeh et al. considered only statistical features. Ding et al. fo-
cused on the reduction of energy consumption of wearable device-based HAR
systems by exploring i) the use of hybrid, i.e., non-uniform, window techniques,
ii) the use of a mutual information-based feature selection method, and iii) their
proposed Random Forest methods [12]. They considered only time-domain fea-
tures and, despite the focus on wearable devices, the experimental evaluation
was performed on a XIAOMI 5 smartphone, which acts as a data collector from
integrated sensors, and a Fujitsu SH771 laptop, which runs their proposed fea-
ture extraction and recognition algorithm. Moreover, the energy efficiency was
evaluated in terms of computational time reduction, i.e., the time taken by the
laptop to perform the recognition activity.

Another work exploring non-uniform window segmentation for energy-efficient
HAR is the one of Bhat et al. [7]. The authors proposed a HAR framework that
leverages textile-based stretch sensors and an accelerometer to capture raw data
from 9 users. They considered features only from the frequency domain, i.e.,
Fast Fourier Transform and Discrete Wavelet Transform. They then used differ-
ent classifiers, such as Support Vector Machine, Random Forest, Decision Tree,
k-Nearest Neighbors, and their proposed neural network. The framework was
implemented on the TI-CC2650 microcontroller, and the authors measured both
the power and the energy consumed during the sensing, feature selection and
classification, and communication via Bluetooth phase. However, the authors
considered all the sets of selected features as if they were all equally relevant in
their contribution to the activity recognition. Subsequently, Bhat et al. used a
commercial analog front end to propose a fully integrated ultra-low power hard-
ware accelerator for HAR that provides all steps from reading raw sensor data
to activity classification. However, the feature selection was not the focus of the
work.

Most of the literature does not consider the computational complexity of
individual features, thus neglecting their varying complexity and, consequently,
their different impact on energy consumption. Some works, such as the one by
Barandas et al., focused on providing tools that help users get an idea of the
computational cost of feature extraction [6]. The authors developed a Python



Title Suppressed Due to Excessive Length 5

package named Time Series Feature Extraction Library (TSFEL), which pro-
vides a set of implemented feature extraction methods based on Numpy and
SciPy. The proposed library allows users to analyze time series data and extract
features in the temporal, statistical, and spectral domains. As output, it provides
an estimation of the complexity of the feature. Moreover, the library is designed
to allow users to write their feature extraction method and its corresponding
domain so that other features can be added to those available by default in the
library.

Compared to the existing literature, we consider simultaneously time and
frequency domain features, and we evaluate the energy impact of each selected
feature on a low-power device after considering the computational complexity of
each feature.

3 Methodology

In this section, we provide background on the feature selection process, and we
describe our proposed methodology to extract, select, and estimate the energy
consumption of the features.

3.1 Background

The HAR process comprises four phases, typically: i) data gathering, ii) data
pre-processing, iii) feature engineering, and iv) classification. Feature engineer-
ing consists of feature extraction and feature selection steps. Feature extraction
is about analyzing the raw signal in the time, frequency, and time-frequency do-
mains and subsequently extracting distinctive features. This step can be carried
out manually by a so called domain expert, also with the help of optimization
algorithms, or can be carried out automatically with the help of deep learning
algorithms.

Feature selection is about discarding irrelevant and redundant features to se-
lect a subset of meaningful features. Filter-based, wrapper-based, and embedded-
based approaches are the most widely used in this step. Filter methods leverage
training data characteristics to identify feature importance and do not depend on
the learning algorithm. Wrapper methods iteratively search for the relationship
between optimal feature subset selection and feature relevance until a stopping
criterion is met, and the search relies on the predictive performance of the spe-
cific learning algorithm. Dhal and Azad surveyed feature selection techniques
and the corresponding area of ML applications [11], concluding that: i) the filter
approach is much faster than the other two, but it is less accurate; ii) the wrapper
approach is the most accurate, but it suffers high computational time, whereas
the embedded approach overcomes the problems of the other two approaches;
iii) results of feature selection methods vary depending on the used dataset and
adopted ML approach.
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3.2 Proposed Approach

Extracting relevant features from both time and frequency domains provides
more benefits. Indeed, time domain features are commonly used because of their
low computation cost. However, identifying complex dynamics and hidden pat-
terns, such as repetitive movements or other periodic components, may require
analyzing signals in the frequency domain to unveil those peculiarities that are
not so easily discernible in time domain analysis. Therefore, we extract features
from both domains. In particular, we extract statistical data, such as mean and
standard deviation, and other relevant metrics, such as interquartile range, au-
toregressive coefficients, signal magnitude area, and root mean square from the
time domain. We used the Fast Fourier Transform (FFT), a mathematical tech-
nique that decomposes the data into different frequency components, to extract
features such as skewness, kurtosis, peaks, and energy in the frequency domain.

3.3 Feature Energy Characterization

In order to analyze the trade-off between the energy consumption of the con-
sidered features and the corresponding classification accuracy, we developed a
sensor-based HAR application. The application comprises two distinct tasks.
The first task is responsible for data collection from a triaxial accelerometer and
gyroscope, while the second task is responsible for computing each feature on the
gathered data. The software was compiled for the ESP32 platform and executed
on the wearable device while the power-drawn trace was recorded to estimate
the energy consumption. An example of a power trace is presented in Figure 1.

In particular, the figure reports the power consumption when computing the
FFT followed by the Kurtosis, standard deviation, and Skewness features. The
energy bursts corresponding to each feature have been highlighted by dotted
rectangles. It is noteworthy that the FFT exhibits a higher power level with
respect to the computation of the feature. This is likely due to the fact that
it has been implemented using the Espressif ESP32 library which involves the
usage of the internal digital signal processor (DSP). Moreover, the periodic bursts
corresponding to the reading of the sensor samples are also clearly visible. Notice
that to make the bursts in the figure more visible, both the FFT and feature
calculations were consecutively repeated ten times. The features considered in
this work, together with the corresponding energy consumption, are listed in
Table 1.

Notice that FFT appears to be the most expensive in terms of energy, reach-
ing almost 1400 µ J, despite using a dedicated co-processor (DSP). Moreover,
features involving simple operations such as multiplications, sums, and compar-
isons record a consumption lower than one µ J. An intermediate range is shown
by features that involve more complex operations, such as sorts, exponentials,
and square roots.

Starting from the characterization of the proposed features, we leverage both
wrapper and embedded approaches as feature selection strategies. In particular,
we use the Recursive Feature Elimination (LR-RFE) wrapper-based method that



Title Suppressed Due to Excessive Length 7

0 1000 2000 3000 4000 5000

time [ms]

80

90

100

110

120

130

140

150

160

170

180

p
o
w

e
r 

[m
W

]

FFT Kurtosis STD Skewness

Fig. 1. Power consumption trace of the ESP32 collected during features computation.

Table 1. Characterization of the features energy consumption.

Feature Formula Energy [µJ]

Mean 1
n

∑n

i=1
si 0.21

Min min(s1, s2, ...sn) 0.19
Max max(s1, s2, ...sn) 0.19
Median median(s1, s2, ...sn) 152.66
Standard Deviation

√
1
n

∑n

i=1
(si − µs)2 409.81

N Peaks The number of signal peaks 0.15
Peak-to-Peak Amplitude max(s) − min(s) 0.17
Interquartile Range perc(s, 75) − perc(s, 25) 119.32
Autocorrelation 1

n

∑n−k

i=1
(si − s̄) ∗ (si+k − s̄) 0.17

Energy

∑n

i=1
s2
i

length(si)
0.15

Autoregressive coefficients
∑n

i=1
αix(n − i) + ϵ(n) 0.15

Signal Magnitude Area 1
n

∑n−1

i=1
(|xi| + |yi| + |zi|) 0.15

Root Mean Square
√

1
n

∑n

i=1
s2
i

385.47

FFT
∑N−1

n=0
x(n) · e−j2π kn

N 1399.61

Spectral Mean

∑n

i=1
k|Si|

2∑n

i=1
|Si|2

0.15

Skewness E[(si−s̄)4]

E[(si−s̄)2]2
189.11

Kurtosis E[( si−s̄

σ )3] 186.98
Growth factor max(|s|)√

mean(s2)
10.32
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gradually reduces the number of features combined with logistic regression. This
method considers all features and, subsequently, removes iteratively the least
relevant ones. We also use the Select From Model with RidgeCV regularization
(SFM-RidgeCV) embedded-based method, which involves a set of RidgeCV mod-
els. Each RidgeCV model has a different set of selected features and chooses the
best feature subset based on cross-validated performance metrics. The method
then leverages the optimal feature subset to train the final model.

4 Experimental Evaluation

In this section, we provide a thorough description of the experimental setup, and
we present the results of several experiments.

4.1 Setup

Feature selection algorithms, model training, and testing have been executed on
a personal computer equipped with an Intel Core i7-4712MQ × 8 processor and 8
GB of RAM using Python. The energy characterization of each feature was done
by executing it on an ESP32 connected to an MPU6050 triaxial accelerometer
and gyroscope [20].

To estimate the device’s energy consumption, we measured the voltage drop
across a (9.8Ω) sensing resistor placed in series with the device’s power supply.
The device was powered at 3.3V using an NGMO2 Rohde & Schwarz dual-
channel power supply [32]. During the experiments, we sampled the monitored
signals using a National Instruments NI-DAQmx PCI-6251 16-channel data ac-
quisition board [28].

The solidness of our methodology has been evaluated using three represen-
tative datasets collected via wrist-worn devices have been evaluated, namely
Watch_HAR, Ad-hoc DB, and RealWorld2016.

Watch_HAR [5, 35]: in this dataset, 13 subjects (both male and female)
wearing a smartwatch on their dominant hand performed activities (commonly
executed at home or at work) in a laboratory environment. Data are collected
from the accelerometers, gyroscopes, and magnetometers. Each subject, in its
own style, carried out 16 activities for approximately 1 to 3 minutes: brushing
teeth, preparing sandwiches, reading a book, typing, using a phone, using remote
control, walking freely, walking holding a tray, walking with a handbag, walking
with hands in pockets, walking with objects underarm, washing face and hands,
washing mug, washing plate, writing. Note that we removed the walking activities
from this dataset because we wanted to focus solely on the recognition of hand-
based activities.

Ad-hoc DB [25]: we created this dataset specifically to study the recogni-
tion of handwashing and handrubbing activities performed during the day. Data
are collected from the triaxial accelerometer and gyroscope of a smartwatch
positioned on the wrist of the dominant hand of four participants during real-
life activities. Each subject wore the smartwatch for several hours on different
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days and was asked to annotate the start and the end of each handwashing or
hand-rubbing activity performed during the day. Together with the activities of
interest, we also collected Unknown Activities (UAs) data by randomly sampling
the sensors during the day. For each subject, we collected about 2 hours spent
washing hands, about 2 hours and 30 minutes spent rubbing, and about 3 hours
of UAs.

RealWorld2016 [34]: the dataset includes movements from 15 different sub-
jects, comprising 8 males and 7 females, engaged in various activities such as
standing, lying down, sitting, jumping, climbing up, climbing down, walking, and
running. Data for each activity were gathered using six sensors that measured ac-
celeration, GPS, gyroscope, light, magnetic field, and sound levels. These sensors
were positioned at various body locations, including the chest, forearm, head,
shin, thigh, upper arm, and waist. Additionally, each movement was recorded
with a video camera for further analysis. The subjects had an average age of 32
years, an average weight of 74 kg, and an average height of 171 cm, with each
activity lasting approximately 10 minutes on average.

The signals of the three datasets have been divided into a 2.56 seconds time
window. Choosing the time window size and the percentage of overlap is non-
trivial. The choice motivation is manifold: on the one hand, according to the
literature, in HAR tasks, different window lengths have been used, from 1 second
up to 30 seconds [18, 19]. On the other, in our preliminary exploration, we found
that the best value for the datasets resulted in 2 seconds without overlap. Last
but not least, using the FFT requires a power of 2 sample length to allow a
more efficient computation. Therefore, we opted for 256 samples, which resulted
in 2.56 seconds, giving a sampling frequency of 100 Hz.

The dataset contains accelerometer and gyroscope signals, each measuring
movement along three axes (x, y, z). The Signal Magnitude Area (SMA) is
computed across all three axes together as a single value for each sensor type.
For the time domain, there are 12 features per 3 axes and 2 types of sensors
(accelerometer and gyroscope), thus resulting in 12 × 3 × 2 features. For the
frequency domain, there are 8 features per axis, resulting in 8× 3× 2 features.
As result, the total number of features is 122 features.

4.2 Accuracy results

By varying the number of features, the two selection methods, SFM-RidgeCV
and LR-RFE, have been applied to the three datasets. The best set of selected
features was then used to train and test the recognition accuracy of a Random
Forest classifier.

Figure 2 shows the classification accuracy obtained with the SFM-RidgeCV
and LR-RFE selection methods when varying the number of the selected fea-
tures, expressed as a fraction of totals. Results are shown for Ad-hoc DB (blue
line), Watch_HAR (orange line), and RealWorld2016 (green line) datasets. Each
point of the plots is obtained by averaging 5 executions using different random
seeds, and vertical bars represent the standard deviation.
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Fig. 2. Classification accuracy with respect to the number of selected features expressed
as a fraction of totals.
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The Ad-hoc DB dataset reaches a stable accuracy value close to the maximum
using about 50% of the available features with both selection methods. Although
the other datasets require a higher percentage of available features to get closer
to the maximum accuracy, it is interesting to note that a high level of accuracy
(i.e., greater or equal to 80%) is reached with less than 20% of available features
for the Ad-hoc DB and RealWorld2016 datasets with both selection methods.
This means that, depending on the application requirements, it is possible to
save energy without sacrificing accuracy too much.

4.3 Energy-aware feature selection

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
MCR

2000

3000

4000

5000

6000

7000

8000

9000

En
er

gy
 [µ

J]

ad hoc
watchHAR
real world
ad hoc best
watchHAR best
real world best

Fig. 3. Pareto plan reporting the trade-off between the miss-classification rate (MCR)
and the total energy consumption of the corresponding selected features.

Figure 3 shows the Pareto plan, which plots each feature selection point
obtained in the previous experiments. These points are characterized in terms of
total energy consumption in micro joules and the corresponding misclassification
rate (MCR) of the Random Forest Classifier. The results for the three datasets
are shown in three different colors: blue for AD-hoc DB, orange for WatchHAR,
and green for RealWorld2016.
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For each dataset, the best trade-off point, which minimizes both energy con-
sumption and MCR, is highlighted in specific colors: light blue for Ad-hoc DB,
red for WatchHAR, and yellow for RealWorld2016. The optimal point for Watch-
HAR includes 25 features, while the other two datasets count 20 features.

(a) Ad-hoc DB

(b) WatchHAR

(c) RealWorld2016

Fig. 4. Visual representation of the selected features in the Pareto optimal points by
means of word clouds.
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To better understand which features were selected at each optimal point and
how they contribute to global energy consumption, we constructed the three
word clouds corresponding to the three optimal points highlighted in the Pareto
plot. Each cloud is a visual representation of the occurrence of each feature tag in
the way that the words appear bigger the more often they are used. For instance,
considering a feature named gyroY_fft_npeaks, which is the number of peaks
calculated over the spectral representation of the y component of the gyroscope,
it contributes to the word cloud by increasing both the gyroY, fft and npeaks
counters.

Figure 4 shows the three resulting word clouds corresponding to the experi-
ments conducted on top of the three reference datasets. It is interesting to note
that the proposed method provides an optimal feature list in all three datasets
that mainly contains features computed from the FFT despite its high energy
cost. This demonstrates the fact that to have a good compromise between ac-
curacy and energy consumption, it is still necessary to spend the energy needed
to shift to the frequency domain instead of calculating features directly on top
of the time series data. An additional observation derived from an analysis of
the figure indicates that, in all three datasets, the signals derived from the ac-
celerometer appear to be more significant than those derived from the gyroscope.
Consequently, the computed features primarily originate from it.

5 Conclusion

High dimensional sensor data poses challenges in terms of pattern recogni-
tion and computational complexity for sensor-based human activity recognition,
which also impact the system energy expenditure. This paper proposes a method
to extract, select, and characterize the energy associated with each feature in-
volved in activity recognition. The method aims to select the most informative
features while considering their energy impact. We tested our methodology on
three datasets, and the results show that it is possible to fine-tune feature se-
lection to find the best compromise between accuracy and energy consumption.
The analysis also highlights that a good compromise is reached when features are
selected from the frequency domain, although this implies selecting features with
a higher energy cost. Our proposed methodology is general enough to be applied
in different classification scenarios, and it can help tune the energy impact of
machine learning models deployed on wearable devices.
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